Ярославский педагогический вестник. Серия Естественные науки. Вып. 1-2009 ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

Библиографический список

- 1. Donaldson S.K., Kronheimer P.B. The geometry of four-manifolds. Oxford Univ. Press, 1990.
- 2. Feehan P.M.N. Geometry of the ends of the moduli space of anti-self-dual connections. J.Diff.G. 42, No.3 (1995), 465-553.
- 3. Kirwan F. Partial desingularisations of quotients of nonsingular varieties and their Betti numbers. Ann of Math. 122 (1985), 41-85.
- 4. Maruyama M. Singularities of the curves of jumping lines of a vector bundle of rank 2 on P2.
- 5. Algebraic Geometry, Proc. of Japan-France Conf., Tokyo and Kyoto, 1982, Lect. Notes in Math., 1016, Springer, 1983, 370-411.
- 6. Maruyama M. Moduli of stable sheaves I,II J. Math. Kyoto Univ. 17 (1977), 91-126, 18 (1978), 557-614. Mumford D., Fogarty J. Geometric Invariant Theory. 2nd edition, Springer, 1982.
- 7. Okonek C., Schneider M., Spindler H. Vector Bundles on Complex Projective Spaces. Birkhauser, 1980
- 8. Nagaraj D., Seshadri C. Degenerations of the moduli spaces of vector bundles on curves Proc. Indian Acad. Sci. (Math. Sci.), 107, No. 2 (1997), 101-137, 109, No. 2 (1999), 165-201.
- 9. Taubes C.H. A framework for Morse theory for the Yang-Mills functional. Invent. math. 94 (1988), 327-402.
- 10. Шафаревич, И.Р. Основы алгебраической геометрии. М.: Наука, 1988.

Е.И.Смирнов

ГОМОЛОГИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ ХАУСДОРФОВЫХ СПЕКТРОВ Введение

Изучение производных функтора проективного предела, действующего из категории счетных обратных спектров со значениями в категории локально выпуклых пространств, проведенное в [1-2], позволило универсальным образом решать вопросы о гомоморфности данного отображения посредством точности некоторого комплекса в абелевой категории векторных пространств. Позднее в работе [3] было введено широкое обобщение понятий прямого и обратного спектров объектов аддитивной полуабелевой категории \mathcal{G} – понятие хаусдорфова спектра, аналогичное δs – операции в дескриптивной теории множеств. Эта идея характерна еще для алгебраической топологии, общей алгебры, теории категорий, теории обобщенных функций. Построение хаусдорфовых спектров $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ достигается последовательным стандартным расширением малой категории индексов Ω . Категория $\mathcal H$ хаусдорфовых спектров оказывается при подходящем определении отображения спектров аддитивной и полуабелевой. В частности, ${\cal H}$ содержит категорию В.П.Паламодова [1] счетных обратных спектров со значениями в категории TLC локально выпуклых пространств, Hпредел хаусдорфова спектра в категории TLC обобщает понятия проективного и индивидуального пределов и определяется действием функтора Haus : $\mathcal{H} \longrightarrow TLC$. Действие функтора Haus на счетные хаусдорфовы спектры над категорией банаховых пространств определяет класс Н-пространств, для объектов которого справедлива теорема о замкнутом графике и который содержит категорию пространств Фреше, пространств Де Вильде [7], пространств Д.А.Райкова [5], пространств Суслина [6]. Нпредел хаусдорфова спектра H-пространств является H-пространством. В настоящей работе показано, что в категории имеется много инъективных объектов и определены правые производные Haus i (i = 1, 2, ...), а "алгебраический "функтор Haus $: \mathcal{H}(L) \longrightarrow L$ над абелевой категорией L векторных пространств (над ${f R}$ или ${f C}$) имеет инъективный тип, то есть если

$$0 \longrightarrow \mathcal{X} \longrightarrow \mathcal{Y} \longrightarrow \mathcal{Z}$$

точная последовательность отображений хаусдорфовых спектров со значениями в L, то предельная последовательность

$$0 \longrightarrow \operatorname{Haus}(\mathcal{X}) \longrightarrow \operatorname{Haus}(\mathcal{Y}) \longrightarrow \operatorname{Haus}(\mathcal{Z})$$

точна или ациклична в терминах В.П.Паламодова [2]. В частности, регулярность хаусдорфова спектра \mathcal{X} неотделимостей \mathcal{Y} обеспечивает точность функтора Haus : $\mathcal{H}(TLC) \longrightarrow TLC$ и условие обращения в нуль Haus $^1(\mathcal{X}) = 0$. Классические результаты Мальгранжа и Эренпрайса о разрешимости неоднородного уравнения p(D)D' = D', где p(D) – линейный дифференциальный оператор с постоянными коэффициентами в \mathbf{R}^n , D' = D'(S) – пространство обобщенных функций в выпуклой области $S \subset \mathbf{R}^n$, распространяется на случай не обязательно открытых или замкнутых множеств S. Пространство основных функций на таких множествах $S \subset \mathbf{R}^n$ является H-пространством (вообще говоря, с неметризуемой топологией), то есть

$$D(S) = \bigcup_{F \in \mathcal{F}} \bigcap_{s \in F} D(T_s), \tag{1}$$

где $\{\bigcap_{s\in F} T_s\}_{F\in\mathcal{F}}$ образуют фундаментальную систему бикомпактных подмножеств из $S,\,D(T_s)$ – пространства Фреше основных функций с носителями в замкнутых множествах $T_s\subset \mathbf{R}^n$, где $S=\bigcup_{F\in\mathcal{F}}\bigcap_{s\in F} T_s$. Гомологическими методами устанавливается критерий обращения в нуль $\mathrm{Haus}^{\,1}(\mathcal{X})=0$ для функтора $\mathrm{Haus}\, \mathrm{xayc}$ дорфова предела, ассоциированного с представлением (1), где \mathcal{X} – xaycдорфов спектр ядер операторов $p(D):D'(T_s)\longrightarrow D'(T_s)$ ($s\in |\mathcal{F}|$). Условие $\mathrm{Haus}\, \mathrm{1}(\mathcal{X})=0$ эквивалентно эпиморфизму оператора $p(D):D'(S)\longrightarrow D'(S)$.

Аналогичные теоремы для пространств Фреше впервые доказаны В.П.Паламодовым [1–2].

1. Напомним некоторые определения и теоремы, используемые в этой работе и введенные в рассмотрение в [3–6], [12].

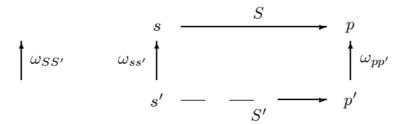
Пусть $\Omega(s)$ – мадая категория, s – объекты из Ω . Направленным классом в категории называется подкатегория, обладающая следующими свойствами:

- i) между любыми двумя объектами определено не более одного морфизма;
- іі) для любых объектов s, s' найдется объект s'' такой, что $s \longrightarrow s''$ и $s' \longrightarrow s''$.

Пусть A(s) – некоторая категория. Категорию B(S), где S – подкатегория A, назовем стандартным расширением категории A(s), если выполнены следующие условия:

- 1^{0} . A(s) подная подкатегория B(S);
- 2^0 . Морфизм $\omega_{SS'}:S'\longrightarrow S$ категории B(S) определен набором морфизмов $\omega_{ss'}:s'\longrightarrow s$ ($s'\stackrel{\omega_{ss'}}{\longrightarrow}s$) категории A(s) таких, что
 - а) для всякого $s' \in S'$ существует $s \in S$ такой, что $s' \xrightarrow{\omega_{ss'}} s$;
 - б) если $s' \xrightarrow{\omega_{ss'}} s, \ p' \xrightarrow{\omega_{pp'}} p, \ s \xrightarrow{S} p,$ то существует морфизм $s' \xrightarrow{S'} p'$ и

коммутативна диаграмма



Пример 1 (стандартное расширение категории A(s)). Пусть G и A(s) – категории, T(F) – категория ковариантных функторов $F: G \longrightarrow A$ с функторным морфизмом $\Phi: F_1 \longrightarrow F_2$, определяемым правилом [2], относящим каждому объекту $g \in G$ морфизм $\Phi(g): F_1(g) \longrightarrow F_2(g)$ категории A такое, что для любого морфизма $\omega: g \longrightarrow h$ категории G коммутативна диаграмма

$$F_{1}(h) \xrightarrow{\Phi(h)} F_{2}(h)$$

$$F_{1}(\omega) \downarrow \qquad \qquad \downarrow F_{2}(\omega)$$

$$F_{1}(g) \xrightarrow{\Phi(g)} F_{2}(g)$$

Ясно, что каждый объект $s \in A$ порождает ковариантный функтор $F_s: g \in G \longmapsto s \in A$ так, что $A \subset T$. Более того, A – полная подкатегория T.

Покажем, что T порождает стандартное расширение категории A (посредством категории G). Пусть $F \in T$ и $S \subset A$ так, что $S = \bigcup_{g \in G} F(g)$ и для $s', s \in S$ множество морфизмов $\operatorname{Hom}(s', s) = \bigcup_{\omega} F(\omega)$, где $\omega : g \longrightarrow h$ и $s' = F(q), \ s = F(h)$. Поэтому определена категория B(S), где S – под-категория S, и морфизмы S0 категории S1 порождаются набором функторных морфизмов S1 где S3 категории S3 порождает S4, а S4 порождает S5 указанным выше способом.

Если взять такой функторный морфизм $\Phi: F' \longrightarrow F$, то морфизмы $\Phi(g): F'(g) \longrightarrow F(g)$ категории $A(s) \ (g \in G)$ образуют набор морфизмов $\omega_{ss'}: s' \longrightarrow s \ (s' = F'(g), \ s = F(q))$ так, что выполнено а). Условие b) вытекает из рассмотрения определения функторного морфизма.

Таким образом, B(S) – стандартное расширение категории A(s). Если G = Ord I, где I – линейно упорядоченное множество, то T = B(S).

Пример 2 (Паламодов [1]). Категория прямых и обратных спектров над полуабелевой категорией K является стандартным расширением категории K.

Рассмотрение спектров на частично упорядоченных множествах более сложной природы (не обязательно линейно упорядоченных) требует их специальной организации индексации.

Осуществим последовательные стандартные расширения категорий

$$\Omega(s) \subset \mathcal{B}(T) \subset \sigma(F) \longrightarrow \sigma^0(F) \subset \mathcal{D}(\mathcal{F}),$$
 (2)

где T — направленные классы объектов $s \in \Omega$, $T \subset \Omega$, F — базисы фильтров множеств $T \in \mathcal{B}$, $F \subset \mathcal{B}$, \mathcal{F} — направленные классы объектов $F \in \sigma$ дуальной категории σ^0 , $\mathcal{F} \subset \sigma$, $\mathcal{F} \in \mathcal{D}$. Такие классы \mathcal{F} будем называть допустимыми для Ω ; положим $|F| = \bigcup_{T \in F} T$, $|\mathcal{F}| = \bigcup_{F \in \mathcal{F}} |F|$, так что $|F| \subset \Omega$ и $|\mathcal{F}| \subset \Omega$. Наиболее характерные построения, связанные с хаусдорфовыми спектрами, используют в качестве малой категории $\Omega = \operatorname{Ord} I$, где I — частично упорядоченное множество индексов.

Рисунок, поясняющий характер индексации, приведен ниже.

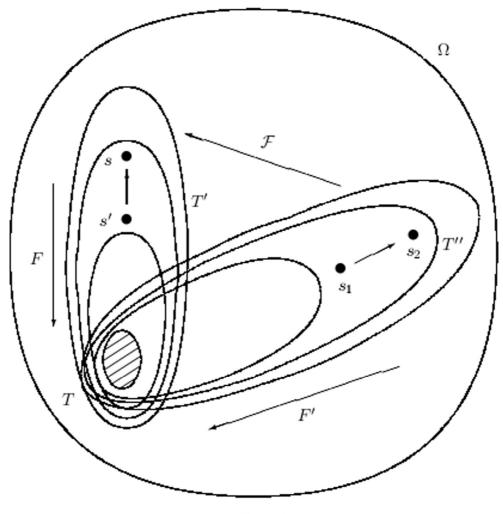


Рис. 1

Пример 3 (построение допустимого класса для Ω). Пусть T — отделимое топологическое пространство, Ω — счетное множество. Множество $A \subset T$ назовем s-множеством, если

$$A = \bigcup_{B \in \mathcal{K}} \bigcap_{t \in B} T_t,$$

где T_t $(t \in \Omega)$ – подмножества T , \mathcal{K} – семейство подмножеств B множества Ω таких, что

- а) для каждого $B \in \mathcal{K}$ множество $T_B = \bigcap_{t \in B} T_t$ бикомпактно в T;
- б) множества T_B ($B \in \mathcal{K}$) образуют фундаментальную систему подмножеств A.

В теоретико-множественном смысле s-множества есть результат δs -операции Хаусдорфа-Колмогорова с некоторыми топологическими условиями.

Предложение 1. Всякое сепарабельное метрическое пространство является s-множеством.

Доказательство. Пусть A – сепарабельное метрическое пространство с метрикой ρ . Рассмотрим в A совокупность всевозможных открытых шаров радиуса меньше наперед заданного $\varepsilon > 0$. Так как пространство A сепарабельное, то на этой совокупности можно выделить последовательность O_{l_1} ($l_1 = 1, 2, ...$) открытых шаров, также покрывающую A. Образуем теперь всевозможные конечные объединения элементов O_{l_1} ($l_1 = 1, 2, ...$). Полученное множество счетно, и его можно занумеровать индексом $n_1 = 1, 2, ...$. Пусть это будут множества A_{n_1} .

Зафиксируем произвольно номер n_1 и покроем A_{n_1} открытыми шарами радиуса меньше $\frac{\varepsilon}{2}$, целиком лежащими в A_{n_1} (A_{n_1} – открытое множество). Тогда в силу сепарабельности метрического пространства A_{n_1} в индуцированной топологии найдется последовательность $O_{n_1l_2}$ ($l_2=1,2,...$) открытых шаров, также покрывающая A_{n_1} . Образуем всевозможные конечные объединения элементов $O_{n_1l_2}$ ($l_2=1,2,...$). Пусть это будут множества $A_{n_1n_2}$.

Таким образом, по индукции подучаем счетное семейство открытых множеств $A_{n_1n_2...n_k}$ (n_k , k=1,2,...), причем справедливы включения $A_{n_1} \supset A_{n_1n_2} \supset ...$, и каждое множество $A_{n_1n_2...n_k}$ является конечным объединением открытых шаров $O_{n_1n_2...n_{k-1}l_k}$ радиуса меньше $\frac{\varepsilon}{2^{n-1}}$ ($k \in \mathbb{N}$).

Пусть теперь K – бикомпактное подмножество пространства A. Легко видеть, что $K \subset A_{n_1n_2...n_k}$ (k=1,2,...) для некоторой последовательности $(n_1,n_2,...)$, причем без ограничения общности можно считать, что K имеет непустое пересечение с каждым из оставшихся множеств $A_{n_1n_2...n_k}$ открытых шаров радиуса меньше $\frac{\varepsilon}{2^{n-1}}$ (k=1,2,...). Поэтому

если $x \in \bigcap_{k=1}^{\infty} A_{n_1 n_2 \dots n_k}$, то справедливо $\rho(x,K) \leq \frac{\varepsilon}{2^m}$ для всех $m=1,2,\dots$, следовательно, $x \in K$. Таким образом, $K = \bigcap_{k=1}^{\infty} A_{n_1 n_2 \dots n_k}$.

Положим $\Omega = \{(n_1, n_2, ..., n_k) : n_k, k = 1, 2, ...\}$ и рассмотрим семейство K всех подмножеств $B \subset \Omega$ таких, что $\bigcap_{t \in B} A_t \neq 0$ – бикомпактное подмножество в A. Ясно, что

$$A = \bigcup_{B \in \mathcal{K}} \bigcap_{t \in B} A_t$$

и *А* является *s*-множеством.

Предложение 2. Пусть A – подмножество в конечномерном пространстве \mathbb{R}^n . Тогда A является s-множеством u, более того,

$$A = \bigcup_{B \in \mathcal{K}} \bigcap_{t \in B} T_t,$$

где T_t – бикомпактные подмножества ${f R}^n$.

Доказательство. В самом деле, в силу предложения 1 и сепарабельности любого подмножества конечномерного пространства в индуцированной топологии множество A имеет вид

$$A = \bigcup_{B \in \mathcal{K}} \bigcap_{t \in B} A_t$$

и является *s*-множеством. Но каждое множество A_t ($t \in \Omega$) ограничено в \mathbf{R}^n , поэтому если обозначить соответствующие замыкания в \mathbf{R}^n через T_t , то $\bigcap_{t \in B} A_t = \bigcap_{t \in B} T_t$ для каждого $B \in \mathcal{K}$ и, следовательно, имеет место равенство (2), где каждое множество T_t ($t \in \Omega$) бикомпактно.

Таким образом, s-множества являются обобщением, с одной стороны, бикомпактных пространств (и локально бикомпактных пространств, счетных на бесконечности), а с другой стороны, сепарабельных метрических пространств. Нам, однако, s-множества будут интересны в связи с возможностью построения ассоциированного функтора простого хаусдорфова спектра на допустимом классе \mathcal{F} для Ω ..

Пусть A – некоторое s-множество, то есть

$$A = \bigcup_{B \in \mathcal{K}} \bigcap_{t \in B} T_t,$$

где $T_t\subset T,\ B\subset \tilde{\Omega}$. Без ограничения общности можно считать, что семейство Q подмножеств $T_t\ (t\in \tilde{\Omega})$ замкнуто относительно конечных пересечений и объединений (то есть существуют сюръекции $\Phi_s,\Psi_s:d(\tilde{\Omega})\longrightarrow \tilde{\Omega}$ соответственно, $d(\tilde{\Omega})$ – множество конечных подмножеств $\tilde{\Omega}$).

Множество $\tilde{\Omega}$ будет частично упорядоченным, если положить $t' \leq t$, когда $T_t \subset T_{t'}$; пусть $\mathcal{G} = \operatorname{Ord} Q$. Более того, можно считать, что каждое множество $B \in \mathcal{K}$ направлено в $(\tilde{\Omega}, \leq)$.

Пусть I – фактормножество всевозможных комплексов $s=[t_1,t_2,...,t_n]$, где $t_i\in |\mathcal{K}|,\ t_i=pr_is\ (i=1,2,...,n,\ n\in \mathbf{N})$ по соотношению эквивалентности во множестве упорядоченных n-ок элементов из $|\mathcal{K}|:(t_1,t_2,...,t_n)\sim (t_1',t_2',...,t_n')$ тогда и только тогда, когда $\{t_1,t_2,...,t_n\}=\{t_1',t_2',...,t_n'\}$. Множество I становится частично упорядоченным, если положить $s'\leq s$, где $s=[t_1,t_2,...,t_n],\ s'=[t_1',t_2',...,t_m']$, когда для каждого t_i найдется t_j' такой, что $t_j'\leq t_i$; пусть $\Omega=\mathrm{Ord}\,I$.

Продолжая далее построение согласно методу (2) трансформации индексов, построим допустимый класс \mathcal{F} для Ω . Для каждого $s = [t_1, t_2, ..., t_n] \in |\mathcal{F}|$ определяется подмножество $R_s = \bigcup_{i=1}^n T_{t_i}$, причем если $s' \leq s$, то $R_s \subset R_{s'}$. Тем самым определяется контравариантный функтор $H(A) : |\mathcal{F}| \longrightarrow \mathcal{G}$, причем

$$A = \bigcup_{F \in \mathcal{F}} \bigcap_{s \in F} R_s. \tag{3}$$

Существенным моментом является то, что I – счетное множество и семейство $\{\bigcap_F R_s\}$ представляет собой фундаментальную систему непустых бикомпактных подмножеств A. Этим завершается рассмотение примера 3.

Пусть \mathcal{G} – некоторая категория. Ковариантный функтор $H_{\mathcal{F}}: \Omega \longrightarrow \mathcal{G}$ назовем функтором хаусдорфова спектра, если $\Omega = |\mathcal{F}|$ для некоторого допустимого класса $\mathcal{F} \in \mathcal{D}$. Если $\mathcal{F} = |\mathcal{F}|$, то $H_{\mathcal{F}}$ есть функтор прямого спектра, а если $\mathcal{F} = \{|\mathcal{F}|\}$ (то есть \mathcal{F} состоит из одного элемента $|F| = |\mathcal{F}|$), то $H_{\mathcal{F}}$ есть функтор обратного спектра.

$$h_{\mathcal{F}} \begin{cases} |\mathcal{F}| & \longrightarrow & \mathcal{G} \\ s & \longmapsto & X_s \\ (s' & \xrightarrow{\omega_{ss'}} & s) & \longmapsto & (X_s & \leadsto & X_{s'}) \\ (F' & \xrightarrow{\omega_{FF'}} & F) & \longmapsto & ((X_s)_{s \in |F|} & \leadsto & (X_{s'})_{s' \in |F'|}) \end{cases}$$

инъективен на объектах и морфизмах (в теоретико-множественном смысле), то существует направленный класс $((X_s)_{s\in |F|}, q_{FF'})_{F,F'\in\mathcal{F}}$ направленных в дуальной категории \mathcal{G}^0 классов $(X_s, h_{s's})_{s,s'\in |F|}$ $(F\in\mathcal{F})$, удовлетворяющих следующим условиям:

 1^0 . Морфизм $X_s \overset{h_{s's}}{\leadsto} X_{s'}$ выбран и зафиксирован в том и только в том случае, когда выбран морфизм $s' \overset{\omega_{ss'}}{\longrightarrow} s$, тогда $h_{s's}: X_s \leadsto X_{s'}$ – единственный морфизм;

20. Диаграмма

$$\begin{array}{ccc} X_s & \stackrel{h_{s''s}}{\leadsto} & X_{s''} \\ h_{s's} \searrow & \swarrow h_{s's''} & \\ & X_{s'} & \end{array}$$

коммутативна для всех $s'' \xrightarrow{\omega_{s's''}} s' \xrightarrow{\omega_{ss'}} s$;

 3^0 . Если $(X_s)_{s\in |F|} \stackrel{q_{F'F}}{\leadsto} (X_{s'})_{s'\in |F'|}$, то для всякого $X_{s'}$ $(s'\in |F'|)$ существует единственный морфизм $h_{s's}: X_s \leadsto X_{s'}$ $(s\in |F|)$. Набор морфизмов $h_{s's}$ $(s'\in |F'|)$ определяет морфизм $q_{F'F}$ так, что будем писать $q_{F'F}=(h_{s's})_{F'F}$. Каждое множество $F\in \mathcal{F}$ является базисом фильтра подмножеств $T\subset |F|$, причем для каждого $T\in F$ класс $(X_s,h_{\hat{s}s})_T$ направлен в категории \mathcal{G}^0 .

Определение 1. Класс $(X_s, h_{s's})_{s,s'\in |\mathcal{F}|}$, удовлетворяющий условиям $1^0 - 3^0$, назовем хаусдорфовым спектром над категорией \mathcal{G} и будем обозначать $\{X_s, \mathcal{F}, h_{s's}\}$.

Частными случаями хаусдорфова спектра являются прямой (достаточно положить $\mathcal{F} = |\mathcal{F}|, h_{s's} \simeq q_{s's}$) и обратный (достаточно положить $\mathcal{F} = \{|\mathcal{F}|\}, h_{s's} : X_s \leadsto X_{s'} \ (s' \longrightarrow s), \ q_{F'F} = i_{|F|} = i_{|\mathcal{F}|}$) спектр семейства объектов.

Множество хаусдорфовых спектров над \mathcal{G} при надлежащем определении отображения спектров (см. строение категории $\mathcal{D}(\mathcal{F})$) образуют категорию, которую обозначим Spect \mathcal{G} . Если $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}, \mathcal{G} = \{Y_p, \mathcal{F}^1, h_{p'p}\}$ — объекты из Spect \mathcal{G} , то два отображения хаусдорфовых спектров $\omega_{\mathcal{Y}\mathcal{X}}: \mathcal{X} \longrightarrow \mathcal{Y}$ и $\omega'_{\mathcal{Y}\mathcal{X}}: \mathcal{X} \longrightarrow \mathcal{Y}$ назовем эквивалентными, если для любого $F \in \mathcal{F}$ существует $F^* \in \mathcal{F}^1$ такой, что диаграмма

коммутативна для любого $p^* \in |F^*|$.

Рассмотрим теперь новую категорию $\mathcal{H}(\mathcal{G})$, объектами которой являются объекты категории Spect \mathcal{G} , а множество $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Y})$ образовано классами эквивалентностей отображений $\omega_{\mathcal{X}\mathcal{Y}}:\mathcal{X}\longrightarrow\mathcal{Y}$. Будем обозначать такие классы $||\omega_{\mathcal{X}\mathcal{Y}}||$.

Для любых объектов \mathcal{X} , \mathcal{Y} , $\mathcal{Z} \in \mathcal{H}$ закон композиции определяет билинейное отображение $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Y}) \times \operatorname{Hom}_{\mathcal{H}}(\mathcal{Y},\mathcal{Z}) \longrightarrow \operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Z})$ ($\operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Z})$ – абелева группа).

Определение 2. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – хаусдорфов спектр над категорией \mathcal{G} . Объект Z категории \mathcal{G} назовем категорным H-пределом хаусдорфова спектра \mathcal{X} над \mathcal{G} , если для любых объектов $A, B \in \mathcal{G}$ и отображений спектров

$$A \xrightarrow{a} \mathcal{X} \xrightarrow{b} B$$

существует единственная последовательность в \mathcal{G}

$$A \xrightarrow{\alpha} Z \xrightarrow{\beta} B$$

такая, что диаграмма

коммутативна в категории Spect \mathcal{G} .

Частным случаем категорного H-предела являются понятия проективного и индуктивного пределов над категорией \mathcal{G} . Пусть, например, \mathcal{X} – обратный спектр объектов из \mathcal{G} . Тогда имеет место (Lim), причем в качестве $B \in \mathcal{G}$ можно взять любой объект X_s из \mathcal{X} с тождественным морфизмом $b_s: X_s \longrightarrow X_s$, составляющим отображение спектров $b^s: \mathcal{X} \longrightarrow X_s$ ($s \in |F|$). Тем самым коммутативна диаграмма

$$\begin{array}{ccccc} & & \mathcal{X} & & \\ & a \nearrow & & \searrow b & \\ A & & & & \mathcal{X} \\ & \alpha \searrow & & \nearrow \beta & \\ & & Z & & \end{array}$$

где $b = (b^s)$, $\beta = (\beta^s)$, $\beta^s : Z \longrightarrow X_s$ $(s \in |F|)$, b – тождественный морфизм категории Spect \mathcal{G} . Поэтому коммутативна диаграмма

$$\begin{array}{ccc}
 & & \mathcal{X} \\
 & & \wedge \\
 & & \uparrow \beta \\
 & & \alpha \searrow & Z
\end{array}$$

для любого объекта $A \in \mathcal{G}$.

Категорный H-предел хаусдорфова спектра (функтор Haus) существует в любой полуабелевой категории \mathcal{G} с прямыми суммами и произведениями (например, категория векторных пространств L, категория TLG топологических векторных групп, категория TLC локально выпуклых пространств).

Пусть Ω — счетное множество и $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ — регулярный хаусдорфов спектр в категории TLC; такой спектр называется счетным. Hпространством называется непрерывный линейный образ в категории TLCH-предела $\varinjlim_{\mathcal{F}} h_{s's}X_s$ банаховых пространств X_s ($s \in |\mathcal{F}|$) счетного хауслорфова спектра \mathcal{X} . Класс H-пространств содержит пространства Фреше

сдорфова спектра \mathcal{X} . Класс H-пространств содержит пространства Фреше и выдерживает операции перехода к счетным индуктивным и проективным пределам, замкнутым подпространствам и фактор-пространствам. Кроме того, для H-пространств справедлив усиленный вариант теоремы о замкнутом графике. Класс H-пространств наиболее широкий из всех известных в настоящее время аналогичных классов Райкова, Вильде, Накамуры, Забрейко-Смирнова. Счетный отделимый H-предел хаусдорфова спектра H-пространств в категории TLC есть H-пространство [12–14].

Всюду в этой работе, если не оговорено противное, хаусдорфовы спектры предполагаются счетными.

2. Пусть Haus : $\mathcal{H}(TLC) \longrightarrow L$ – ковариантный аддитивный функтор хаусдорфова предела из полуабелевой категории $\mathcal{H}(TLC)$ в абелеву категорию L векторных пространств (над \mathbf{R} или \mathbf{C}). Напомним [11], что инъективной резольвентой I объекта $\mathcal{X} \in \mathcal{H}(TLC)$ называется любая последовательность

$$0 \longrightarrow \mathcal{I}_0 \xrightarrow{i_0} \mathcal{I}_1 \xrightarrow{i_1} ...,$$

образованная инъективными объектами, точная в членах \mathcal{I}_k , $k \geq 1$, в которой ker $i_0 \simeq \mathcal{X}$. Любые две инъективные резольвенты одного объекта гомотопны между собой. Так как в категории $\mathcal{H}(TLC)$ много инъективных объектов [12], то каждый объект категории $\mathcal{H}(TLC)$ имеет по крайней мере одну инъективную резольвенту. Правые производные функтора хаусдорфова предела Haus определяются формулой

Haus
$$^k(\mathcal{X}) = H^k(\text{Haus}(\mathcal{I})) \quad (k = 0, 1, ...),$$

где $\mathcal{X} \in \mathcal{H}(TLC)$, \mathcal{I} – любая инъективная резольвента \mathcal{X} , Haus (\mathcal{I}) – комплекс морфизмов категории L, полученный применением функтора Haus к каждому морфизму комплекса \mathcal{I} , а $H^k(\mathrm{Haus}\,(\mathcal{I}))$ (k=0,1,2,...) – гомологии комплекса Haus (\mathcal{I}) . Всякий морфизм $\mathcal{X} \longrightarrow \mathcal{Y}$ категории $\mathcal{H}(TLC)$ накрывается морфизмом $\mathcal{I} \longrightarrow \mathcal{Y}$ инъективных резольвент объектов \mathcal{X} и \mathcal{Y} (см. [11], гл. V, §1). Отсюда вытекает существование морфизмов Haus $^k(\mathcal{X}) \longrightarrow$ Haus $^k(\mathcal{Y})$ так, что объекты Haus $^k(\mathcal{X})$ не зависят от выбора инъективной резольвенты. В то же время функтор Haus имеет инъективный тип [12. C. 88], поэтому имеет место канонический изоморфизм функторов

Haus
$$\simeq$$
 Haus 0 .

Предложение 3. Для всякого свободного хаусдорфова спектра $\mathcal{E} \in$ $\mathcal{H}(L)$

Haus
$$^{i}(\mathcal{E}) = 0 \quad (i = 1, 2, ...).$$

Для доказательства нам потребуется вспомогательное утверждение о строении свободных хаусдорфовых спектров.

Лемма 1. Пусть TLC – категория локально выпусклых пространств. Всякий свободный хаусдорфов спектр над ТLС с инъективными образую- μ ими является инъективным объектом категории $\mathcal{H}(TLC)$.

Доказательство. Пусть $\mathcal{I} = \{I_s, G, i_{s's}\}$ – свободный хаусдорфов спектр над категорией TLC с инъективными образующими I^{α} ($\alpha \in |G|$). Согласно методу трансформации индексов построение свободного хаусдорфова спектра \mathcal{I} из данного хаусдорова спектра $\hat{\mathcal{I}} = \{I^{\alpha}, \hat{G}, \hat{i}_{\alpha'\alpha}\}$, составленного из инъективных объектов категории TLC, предподагает следующие конструкции.

Сначала для каждого $\hat{F} \in \hat{G}$ определяются прямые произведения $T_{\hat{T}} =$ $\prod_{\hat{T}} I^{\alpha} \ (\forall \hat{T} \in \hat{F})$ так, что для $\omega_{\hat{T}\hat{T}'}: \hat{T}' \longrightarrow \hat{T}$ морфизм $\prod_{\hat{T}} I^{\alpha} \longrightarrow \prod_{\hat{T}'} I^{\alpha}$ есть канонический морфизм произведения на сомножитель. Затем для любого конечного $H \subset \hat{G}$ определяются пространства $I_s = \prod_{\hat{T}_1} I^{\alpha} \times \prod_{\hat{T}_2} I^{\alpha} \times ... \times \prod_{\hat{T}_i} I^{\alpha}$, где $H = \{\hat{F}_1, \hat{F}_2, ..., \hat{F}_{|n|}, \hat{T}_i \in \hat{F}_i \ (i = 1, 2, ..., |H|), s = (\hat{T}_1, \hat{T}_2, ..., \hat{T}_{|H|}).$

$$\prod_{\hat{T}_{1H1}} I^{\alpha}$$
, где $H = \{\hat{F}_1, \hat{F}_2, ..., \hat{F}_{|n|}, \hat{T}_i \in \hat{F}_i \ (i = 1, 2, ..., |H|), s = (\hat{T}_1, \hat{T}_2, ..., \hat{T}_{|H|}).$

Таким образом, для $s'=(\hat{T}_1,...,\hat{T}_{|H|},\hat{T}_{|H|+1},...,\hat{T}_{|H_1|})$ и $H_1\supset H,\,i_{s's}:I_s\longrightarrow$ $I_{s'}$ есть естественный мономорфизм сдагаемого в сумму, G определяется всесозможными конечными $H \subset G$.

Пусть теперь $\mathcal{G} = \{Y_p, \mathcal{F}', h_{p'p}\}$ – произвольный хаусдорфов спектр над TLC и \mathcal{L} – подспектр спектра \mathcal{G} так, что $\mathcal{L} = \{Z_p, \mathcal{F}', h_{p'p}\}$, где $Z_p \subset Y_p$ $(p \in \mathcal{F}', h_{p'p})$ $|\mathcal{F}'|$). Пусть далее $\omega_{\mathcal{GL}}: \mathcal{L} \longrightarrow \mathcal{G}$ – отображение хаусдорфовых спектров так, что $\omega_{\mathcal{GL}} = \omega(\varphi, \Phi, \chi)$, где Φ , χ кофинальны в своих областях значений. Очевидно, для доказательства достаточно продолжить морфизмы $\omega_{s\chi(s)}$: $Z_{\chi(s)} \longrightarrow I_s$ до морфизмов $\omega_{s\chi(s)}^*: Y_{\chi(s)} \longrightarrow I_s$ $(s=(\hat{T}_1,...,\hat{T}_{|H|}), H \subset$ \hat{G}). Но объект I^{α} (α принадлежит T^* – свободному объединению \hat{T}_i , i=1, 2, ..., |H|) явдяется инъективным в категории TLC, поэтому существует прододжение $\omega_{\alpha}: Y_{\chi(s)} \longrightarrow I^{\alpha}$ морфизмов $\pi_{\alpha} \circ \omega_{s\chi(s)}$, где $\pi_{\alpha}: I_{s} \longrightarrow I^{\alpha}$ – каноническая проекция. Положим $\omega_{s\chi(s)}^*=(\omega_\alpha)_{\alpha\in T^*}$ так, что $\omega_{s\chi(s)}^*$: $Y_{\chi(s)} \longrightarrow I_s$; ясно, что диаграмма

коммутативна и морфизм $\omega_{s\chi(s)}^*$ искомый. Тем самым, существует продолжение $\omega_{\mathcal{IG}}: \mathcal{G} \longrightarrow \mathcal{I}$. Лемма доказана.

Доказательство предложения 3. Пусть $\mathcal{E} = \{E_{\alpha}, G, i_{\alpha'\alpha}\}$ – свободный хаусдорфов спектр над категорией L с образующими E^s . Для каждого s построим инъективную резольвенту для E^s

$$0 \longrightarrow E^s \longrightarrow I_0^s \longrightarrow I_1^s \longrightarrow \dots$$

и образуем свободные хаусдорфовы спектры $\mathcal{I}_0, \mathcal{I}_1, \dots$ соответственно с инъективными образующими I_0^s, I_1^s, \dots . Все хаусдорфовы спектры $\mathcal{I}_0, \mathcal{I}_1, \dots$ в силу предложения 3.5 [3] являются инъективными объектами категории $\mathcal{H}(TLC)$, поэтому последовательность отображений хаусдорфовых спектров

$$0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_0 \longrightarrow \mathcal{I}_1 \longrightarrow \dots$$

является точной в категории $\mathcal{H}(L)$. Тем самым, последняя последовательность является точной инъективной резольвентой для хаусдорфова спектра \mathcal{E} . Отсюда следует точность в категории L последовательности

$$0 \longrightarrow \operatorname{Haus}(\mathcal{E}) \longrightarrow \operatorname{Haus}(\mathcal{I}_0) \longrightarrow \operatorname{Haus}(\mathcal{I}_1) \longrightarrow \dots$$

Тем самым, $\operatorname{Haus}^{i}(\mathcal{E}) = 0 \ (i = 1, 2, ...)$. Предложение доказано.

Вычислим теперь производные функторы $\mathrm{Haus}^i\ (i\geq 1)$ следующим образом (ср. [2], [10]). Пусть $\mathcal{X}=\{X_s,\mathcal{F},h_{s's}\}$ – произвольный хаусдорфов спектр, \mathcal{E} – свободный хаусдорфов спектр с образующими $X_s\ (s\in |\mathcal{F}|)$. Рассмотрим последовательность отображений хаусдорфовых спектров

$$0 \longrightarrow \mathcal{X} \xrightarrow{\omega_{\mathcal{E}}\mathcal{X}} \mathcal{E} \xrightarrow{\omega_{\mathcal{E}}\mathcal{E}} \mathcal{E} \longrightarrow 0, \tag{D}$$

в которой компоненты отображения $\omega_{\mathcal{E}\mathcal{X}}$ (т.е. набор $(\omega_{Ts_T})_{T\in |\varphi(F)|}$, где $s_T\in T$ – единственный максимальный по направлению элемент в T) действуют по формуле

$$\omega_{Ts_T}: x_{s_T} \longmapsto (\hat{h}_{s's_T} x_{s_T})_{s' \in T},$$

а отображение хаусдорфовых спектров $\omega_{\mathcal{E}\mathcal{E}}: \mathcal{E} \longrightarrow \mathcal{E}$ образовано морфизмами $(T_n$ – кофинальная фильтрующая справа последовательность)

$$\omega_{T^*T_n}: (x_s)_{s \in T_n} \longmapsto (x_{s^*} - \hat{h}_{s^*s_{T_n}} x_{s_{T_n}})_{s^* \in T^*}$$

для любого T^* , $T_n \in F$, $F \in \mathcal{F}$, $T_0 = \emptyset$, $T_{n-1} \subset t^* \subset T_n$, $s_{T_n} \not\subset T^*$ (n = 1, 2, ...).

Теперь ясно, что последовательность (D) точна; следуя В.П.Паламодову [2], будем называть последовательность (D) канонической резольвентой хаусдорфова спектра \mathcal{X} .

Применив функтор Haus к канонической резольвенте (D), получим последовательность локально выпуклых пространств

$$0 \longrightarrow \operatorname{Haus}(\mathcal{X}) \longrightarrow \bigoplus_{\mathcal{F}} \prod_{F} X_{s} \longrightarrow \bigoplus_{\mathcal{F}} \prod_{F} X_{s},$$

которая ациклична и, более того, точна слева, где $\bigoplus_{\mathcal{F}} \prod_F X_s$ – прямая сумма произведений X_s ($s \in |\mathcal{F}|$) в естественной топологии индуктивного предела.

Предложение 4. Пусть Haus : $\mathcal{H}(TLC) \longrightarrow L \ u$

$$0 \longrightarrow \mathcal{X} \xrightarrow{\omega y \mathcal{X}} \mathcal{Y} \xrightarrow{\omega z y} \mathcal{Z} \longrightarrow 0 \tag{D'}$$

точная последовательность хаусдорфовых спектров. Тогда в категории
 L определена точная связующая последовательность

$$0 \longrightarrow \operatorname{Haus}(\mathcal{X}) \longrightarrow \operatorname{Haus}(\mathcal{Y}) \longrightarrow \operatorname{Haus}(\mathcal{Z}) \longrightarrow \operatorname{Haus}^{1}(\mathcal{X})$$

$$\longrightarrow \dots \longrightarrow \operatorname{Haus}^{i-1}(\mathcal{Z}) \xrightarrow{\delta^{i-1}} \operatorname{Haus}^{i}(\mathcal{X}) \xrightarrow{\overline{\omega}^{i}_{\mathcal{Y}\mathcal{X}}^{i}} \operatorname{Haus}^{i}(\mathcal{Y})$$
$$\xrightarrow{\overline{\omega}_{\mathcal{Z}\mathcal{Y}}} \operatorname{Haus}^{i}(\mathcal{Z}) \xrightarrow{\delta^{i}} \dots ,$$

где $\delta^i \ (i=1,2,...)$ – связующие морфизмы.

Так как в сиду предложения 1 получим $\mathrm{Haus}^{i}(\mathcal{E})=0$ для $i\geq 1$, то, очевидно, имеют место изоморфизмы векторных пространств

Haus
$$i(\mathcal{X}) = 0$$
 $(i \ge 2)$, Haus $i(\mathcal{X}) = \operatorname{Coker} \bar{\omega}_{\mathcal{E}\mathcal{E}}$.

Поэтому точной последовательности (D') отвечает точная последовательность векторных пространств

$$0 \longrightarrow \operatorname{Haus}(\mathcal{X}) \longrightarrow \operatorname{Haus}(\mathcal{Y}) \longrightarrow \operatorname{Haus}(\mathcal{Z})$$

$$\longrightarrow \operatorname{Haus}^{1}(\mathcal{X}) \longrightarrow \operatorname{Haus}^{1}(\mathcal{Y}) \longrightarrow \operatorname{Haus}^{1}(\mathcal{Z}) \longrightarrow 0. \tag{D"}$$

2. В работах [1], [2] В.П.Паламодов установил весьма фундаментальные теоремы 11.1 и 11.2 о необходимых и достаточных условиях обращения в нуль $\operatorname{Pro}^{1}(\mathcal{X}) = 0$ для функтора Pro проективного предела счетного семейства локально выпуклых пространств. Мы имеем в виду установить аналогичные условия обращения в нуль $\operatorname{Haus}^{1}(\mathcal{X}) = 0$ для функтора хаусдорфова предела и не для обязательно счетного случая.

Напомним, что в вопросах устойчивости класса H-пространств относительно хаусдорфова предела, а также в теореме представления H-пространств

посредством банаховых пространств существенным условием было предположение регулярности хаусдорфова спектра. Здесь нам потребуется следующее условие. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}_T$ – хаусдорфов спектр локально выпуклых пространств, $V_F^T \subset \prod_r X_s \ (T \in F)$,

$$V_F^T = \{x = (x_s) \in \prod_F X_s : x_{s'} = \hat{h}_{s's}x_s, \ s, s' \in T\},$$

каждое из которых наделено проективной топологией относительно прообразов $\pi_s^{-1}\tau_s$ ($s\in T$), где $\pi_s:\prod_F X_s\longrightarrow X_s$ – каноническая проекция. Соответствующий базис окрестностей нуля проективной топологии порождает ТВГ ($\prod_S X_s,\sigma_{(T)}$) ($T\in F$).

Образуем ТВГ $(\prod_F X_s, \sigma_{(F)})$ с базисом окрестностей нуля V_F^T $(T \in F)$. Хаусдорфов спектр \mathcal{X} называется регулярным, если $(\prod_F X_s, \sigma_{(F)})$ удовлетворяет условию: из сходимости сети $(a_\gamma)_{\gamma \in P}$ в ТВГ $(\prod_F X_s, \sigma_{(T)})$ $(T \in F)$ вытекает сходимость сети (a_γ) в ТВГ $(\prod_F X_s, \sigma_{(F)})$. Если все X_s $(s \in |\mathcal{F}|)$ наделены абсолютно неотделимыми топологиями, то нетрудно видеть, что условие регулярности равносильно полноте $(\prod_F X_s, \sigma_{(F)})$.

Теорема 1. Пусть \mathcal{X} – регулярный хаусдорфов спектр неотделимостей над категорией TLC. Тогда $\operatorname{Haus}^{1}(\mathcal{X}) = 0$.

Доказательство. Учитывая (D), достаточно установить, что Coker $\bar{\omega}=0$, где

$$\bar{\omega}_{\mathcal{E}\mathcal{E}}: \bigoplus_{\mathcal{F}} \prod_{F} X_s \longrightarrow \bigoplus_{\mathcal{F}} \prod_{F} X_s$$

и \mathcal{E} – свободный хаусдорфов спектр с образующими X_s ($s \in |\mathcal{F}|$). Последнее отображение каждому элементу

$$x = (..., 0, ..., \underbrace{\alpha_1, \alpha_2, ...,}_{F_1} \underbrace{\beta_1, \beta_2, ...,}_{F_2}, ..., \underbrace{\gamma_1, \gamma_2, ...,}_{F_m}, ..., 0, ...)$$

ставит в соответствие эдемент

$$y = (..., 0, ..., \underbrace{\alpha_{1} - \hat{h}_{1s_{T_{1}^{(1)}}} \alpha_{s_{T_{1}^{(1)}}}, ..., \alpha_{s_{T_{1}^{(1)}}} - \hat{h}_{s_{T_{1}^{(1)}}} \alpha_{s_{T_{2}^{(1)}}}, ...,}_{F_{1}} \underbrace{\beta_{1} - \hat{h}_{1s_{T_{1}^{(2)}}} \beta_{s_{T_{1}^{(2)}}}, ..., \gamma_{1} - \hat{h}_{1s_{T_{1}^{(m)}}} \gamma_{s_{T_{1}^{(m)}}}, ...,}_{F_{m}} ..., 0, ...),}_{F_{m}}$$

причем ясно, что $\bar{\omega}_{\mathcal{E}\mathcal{E}}(\bigoplus_{\mathcal{F}}\prod_{F}X_{s})$ плотно в $\bigoplus_{\mathcal{F}}\prod_{F}X_{s}$.

Покажем, что $\bar{\omega}_{\mathcal{E}\mathcal{E}}$ является эпиморфизмом. Для этого достаточно установить эпиморфизм $\prod_F X_s \longrightarrow \prod_F X_s$ сужения $\bar{\omega}_{\mathcal{E}\mathcal{E}}$ для каждого $F \in \mathcal{F}$. Проведем доказательство для случая $\mathrm{Haus}\,(\mathcal{X}) = 0$ (действительно, если $\mathrm{Haus}\,(\mathcal{X}) \neq 0$, то для некоторых $F \in \mathcal{F}$, $\bigcap_{T \in F} V_F^T \neq 0$ и $\bar{\omega}_{\mathcal{E}\mathcal{E}}|_{\prod_{X_s}} (\bigcap_{T \in F} V_F^T) = 0$). Пусть $(y_s) \in \prod_F X_s$; найдем последовательность $(\alpha_s) \in \prod_F X_s$ такую, что $\alpha_s - \hat{h}_{ss_{T_n}} \alpha_{s_{T_n}} = y_s$, где $s \prec s_{T_n}$; $T_1 \subset T_2 \subset ...$; $s_{T_1}, s_{T_2}, ...$ — кофинальная последовательность (n = 1, 2, ...). Положим для определенности $s_{T_0} = 1$ и составим ряд (*)

$$y_{s_{T_0}} + \hat{h}_{s_{T_0}s_{T_1}}y_{s_{T_1}} + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_1}s_{T_2}}y_{s_{T_2}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\ldots(\hat{h}_{s_{T_n}s_{T_{n+1}}}y_{s_{T_{n+1}}})) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_n}s_{T_{n+1}}}y_{s_{T_{n+1}}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_n}s_{T_{n+1}}}y_{s_{T_{n+1}}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_0}s_{T_1}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_0}s_{T_1}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_0}s_{T_1}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_0}s_{T_1}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_1}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_0}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_0}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}) + \ldots + \hat{h}_{s_{T_0}s_{T_0}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}) + \dots + \hat{h}_{s_{T_0}s_{T_0}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}) + \dots + \hat{h}_{s_{T_0}s_{T_0}}(\hat{h}_{s_{T_0}s_{T_0}}y_{s_{T_0}y_{s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}y_{s_{T_0}}y_{$$

Так как полнота ТВГ $V_F^T \subset \prod_F X_s$ следует из условия регулярности хаусдорфова спектра \mathcal{X} , то полными будут и фильтр-топологии (по В.П.Паламодову) в пространствах, базис окрестностей нуля которых образуют пространства $\{\hat{h}_{ss'}X_{s'}\}$, где $s' \in |F|, s \succ s'$. Поэтому ряд (*) сходится в пространстве X_1 по фильтртопологии; положим

$$\alpha_1 = \sum_{n=0}^{\infty} (\hat{h}_{s_{T_0} s_{T_1}} \circ \hat{h}_{s_{T_1} s_{T_2}} \circ \dots \circ \hat{h}_{s_{T_n} s_{T_{n+1}}}) (y_{s_{T_{n+1}}}).$$

Но ряд

$$y_{s_{T_1}} + \hat{h}_{s_{T_1}s_{T_2}}y_{s_{T_2}} + \ldots + \hat{h}_{s_{T_1}s_{T_2}}(\ldots(\hat{h}_{s_{T_n}s_{T_{n+1}}}y_{s_{T_{n+1}}})) + \ldots$$

сходится в пространстве $X_{s_{T_1}}$ по фильтртопологии; положим

$$\alpha_{s_{T_1}} = \sum_{n=0}^{\infty} (\hat{h}_{s_{T_1} s_{T_2}} \circ \hat{h}_{s_{T_2} s_{T_3}} \circ \dots \circ \hat{h}_{s_{T_n} s_{T_{n+1}}}) (y_{s_{T_{n+1}}})$$

так, что $\alpha_1 - \hat{h}_{1s_{T_1}}\alpha_{s_{T_1}} = y_1 \ (s_{T_0}=1)$. Аналогично, по индукции, используя полноту пространства X_{T_n} по фильтртопологии, получим равенства $\alpha_{s_{T_n}} - \hat{h}_{s_{T_n}}s_{T_{n+1}}\alpha_{s_{T_{n+1}}} = y_{s_{T_n}}$, где

$$\alpha_{s_{T_n}} = \sum_{k=0}^{\infty} (\hat{h}_{s_{T_n} s_{T_{n+1}}} \circ \dots \circ \hat{h}_{s_{T_{n+k}} s_{T_{n+k+1}}}) (y_{s_{T_{n+k+1}}})$$

(n=0,1,2,...). Теперь для $s \prec s_{T_n}$ и $s \not= \prec s_{T_{n-1}}$ можно положить $\alpha_s = y_s + \hat{h}_{ss_{T_n}}\alpha_{s_{T_n}} \in X_s$ (n=1,2,...). Тем самым, $\bar{\omega}_{\mathcal{E}\mathcal{E}}((\alpha_s)_{s\in |F|}) = (y_s)_{s\in |F|}$ и, следовательно, $\mathrm{Coker}\,\bar{\omega}_{\mathcal{E}\mathcal{E}} = 0$ и $\mathrm{Haus}\,^1(\mathcal{X}) = 0$. Теорема доказана.

Если \mathcal{Y} – регулярный хаусдорфов спектр над TLC и \mathcal{X} – хаусдорфов спектр неотделимостей, то легко видеть, что \mathcal{X} также регулярный спектр. В самом деле, имея в виду замечание перед теоремой, достаточно установить полноту $(\prod_F X_s, \sigma_{(F)})$; последняя ТВГ вложена в соответствующую ТВГ $(\prod_F Y_s, \sigma_{(F)}^1)$. Если $(a_\gamma)_{\gamma \in P}$ фундаментальна в $\sigma_{(F)}$, то $a_\gamma \in a_{\gamma_0} + V_F^T$ $(\forall T \in F, \gamma \succ \gamma(T), \gamma_0 \succ \gamma(T))$ и в силу замкнутости V_F^T последней ТВГ получим включение $(a^* = \lim_P a_\gamma)$

$$a^* - a_{\gamma_0} \in V_F^T \quad (\forall T \in F, \quad \gamma_0 \succ \gamma(T)),$$

что и означает сходимость (a_{γ}) к a^* в $(\prod_r X_s, \sigma_{(F)})$.

Таким образом, в формулировке теоремы 1 регулярность хаусдорфова спектра $\mathcal X$ может быть заменена регулярностью хаусдорфова спектра $\mathcal Y$.

Теорема 2. Пусть \mathcal{Y} – регулярный хаусдорфов спектр, \mathcal{X} – хаусдорфов спектр неотделимостей \mathcal{Y} и

$$0 \longrightarrow \mathcal{X} \longrightarrow \mathcal{Y} \longrightarrow \mathcal{Y}/\mathcal{X} \longrightarrow 0$$

точная последовательность хаусдорфовых спектров. Тогда последовательность

$$0 \longrightarrow \operatorname{Haus}(\mathcal{X}) \longrightarrow \operatorname{Haus}(\mathcal{Y}) \longrightarrow \operatorname{Haus}(\mathcal{Y}/\mathcal{X}) \longrightarrow 0$$

является точной в категории L.

Продолжим рассмотрение вопроса о точности функтора Haus : $\mathcal{H}(TLC) \longrightarrow L$ для произвольной точной последовательности хаусдорфовых спектров

$$0 \longrightarrow \mathcal{X} \longrightarrow \mathcal{V} \longrightarrow \mathcal{Z} \longrightarrow 0$$
.

Из проведенных выше доказательств становится очевидным, что достаточным условием для обращения в нуль $\operatorname{Haus}^1(\mathcal{X}) = 0$ является полнота $\operatorname{TB}\Gamma \left(\prod_F X_s, \sigma_{(F)}^*\right)$ для каждого $F \in \mathcal{F}$ (ср. предложение 7.1 [3]), где $\mathcal{I}_{(F)}^*$ образована фильтрацией V_F^T по T. В то же время каждое пространство V_F^T наделено линейной топологией прообраза $\sup \pi_s^{-1} \tau_s \ (T \in F)$ (образуя одновременно $\operatorname{TB}\Gamma \ (\prod_F X_s, \sigma_{(F)})$) так, что $\operatorname{TB}\Gamma \ (\prod_F X_s, \sigma_{(F)})$, вообще говоря, неметризуемая. Оказывается, что полнота $\operatorname{TB}\Gamma \ (\prod_F X_s, \sigma_{(F)}^*)$ является и необходимым условием обращения в нуль $\operatorname{Haus}^1(\mathcal{X}) = 0$.

Предложение 3. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – счетный хаусдорфов спектр над категорией L. Тогда для того, чтобы $\mathrm{Haus}^{\, 1}(\mathcal{X}) = 0$, необходимо и достаточно, чтобы $TB\Gamma \left(\prod_F X_s, \sigma_{(F)}^*\right)$ была полной для каждого $F \in \mathcal{F}$.

Теорема 3. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – счетный хаусдорфов спектр над категорией L. Тогда для того, чтобы $\mathrm{Haus}^{\, 1}(\mathcal{X}) = 0$, необходимо и достаточно, чтобы для кажсдого $F \in \mathcal{F}$ в $\prod_F X_s$ можно определить квазинорму $\mu = \mu_F \geq 0$ такую, что

i) ассоциированная топологическая группа $(\prod_{F} X_{s}, \tau_{(F)}^{*})$ полная, $\tau_{F} \geq \sigma_{(F)}^{*}$;

ii) μ_F^* непрерывна на $(\prod_F X_s, \sigma_{(F)}^*)$.

Доказательство. Heo f xo d u mo c m b следует из рассуждений перед теоремой, так как, полагая $\tau_F = \sigma_{(F)}^*$ и

$$\mu_F(x) = \sum_{k=1}^{\infty} 2^{-k} d_{T_k}(x),$$

где $d_{T_k}(x)=0$ для $x\in V_F^{T_k}$ и $d_{T_k}(x)=1$ для $x\in\prod_F X_s\setminus V_F^{T_k}$ $(k\in\mathbf{N}),$ получим i и ii.

Достаточность. Пусть $Z_F = \bigcap\limits_{k=1}^{\infty} V_F^{T_k}$ и факторпространство $\prod\limits_F X_s/Z_F$ наделено образами топологий $\sigma_{(F)}^*$ и τ_F так, что МВГ $(\prod\limits_F X_s/Z_F, d_F)$, где $d_F(\xi) = \inf\limits_{x \in \xi} \mu_F(x)$, отделимая и полная, а МВГ $(\prod\limits_F X_s/Z_F, \tilde{d}_F)$, где $\tilde{d}_F(\xi) = \inf\limits_{x \in \xi} \sum\limits_{k=1}^{\infty} 2^{-k} d_{T_k}(x)$, является отделимой. Тем самым функционал d_F является счетно-полуаддитивным на МВГ $(\prod\limits_F X_s/Z_F, \tilde{d}_F)$ и $d_F^*(\xi) = \inf\limits_{\xi_n \to \xi} \lim\limits_{n \to \infty} d_F(\xi_n) = \inf\limits_{x \in \xi} \mu_F^*(x)$ непрерывен на ней. Откуда в силу леммы о счетно-полуаддитивном функционале [8] получим $d_F = d_F^*$ и, следовательно, МВГ $(\prod\limits_F X_s/Z_F, \tilde{d}_F)$ полная,а, значит, полной будет ТВГ $(\prod\limits_F X_s, \sigma_{(F)}^*)$, что дает возможность заключить, рассматривая все $F \in \mathcal{F}$, что Haus $^1(\mathcal{X}) = 0$. Теорема доказана.

В случае счетного обратного спектра, в частности, получаем 1 часть теоремы 11.1.1 из [1], в случае прямого спектра \mathcal{X} топология τ_F абсолютно неотделимая для каждого одноточечного $F \in \mathcal{F}$. Более того, знаменитая лемма В.П.Паламодова [1], составляющая ядро доказательства, является частным случаем леммы о счетно-полуаддитивном функционале [8].

Далее φ_F^s обозначает фильтртопологию в X_s $(s \in |F|)$, образованную пространствами $\{\hat{h}_{ss'}X_{s'}\}$ $(s' \in |F|)$. Отметим, однако, что произведение топологий φ_F^s $(s \in |F|)$ в $\prod_F X_s$, вообще говоря, не совпадает с топологией $\sigma_{(F)}^*$.

Более удобные для приложений достаточные условия обращения в нуль $\operatorname{Haus}^{1}(\mathcal{X}) = 0$ даны в следующем утверждении.

Теорема 4. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – счетный хаусдорфов спектр над категорией L. Для того, чтобы $\mathrm{Haus}^1(\mathcal{X}) = 0$, достаточно, чтобы для каждого $s \in |\mathcal{F}|$ в X_s можно ввести семейство квазинорм $\{\rho_{\beta s}\}$, задающее полное отделимое псевдотопологическое векторное пространство $(X_s, \rho_{\beta s})$, сохраняющее непрерывность морфизмов $\hat{h}_{s's}$ и так, что для каждого $s \in |\mathcal{F}|$, $F \in \mathcal{F}$ выполнено условие:

A) функционал $\rho_{be_ss}^*$ для некоторого $\beta_s = \beta_s(F)$ непрерывен в фильтртопологии (X_s, φ_F^s) .

В частности, в случае обратного спектра \mathcal{X} получим теорему 5.1 из [2], причем наше утверждение является более сильным уже в этом случае.

Теорема 5. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – счетный хаусдорфов спектр отделимых H-пространств над категорией TLC. Тогда для того, чтобы $Haus^1(\mathcal{X}) = 0$, необходимо и достаточно, чтобы пространства (X_s, φ_F^s) $(s \in |F|)$ для каждого $F \in \mathcal{F}$ были полными $TB\Gamma$.

Доказательство. Необходимость. Пусть Haus $^1(\mathcal{X}) = 0$. Тогда в силу предложения 3 ТВГ $(\prod_F X_s, \sigma_{(F)}^*)$ является полной для каждого $F \in \mathcal{F}$; тем самым полными будут пространства X_s по своим фильтртопологиям φ_F^s $(s \in |F|)$ как фактор-пространства ТВГ счетного характера.

Достаточность. Пусть $F \in \mathcal{F}$, $s \in |F|$. Напомним, что H-пространство (X_s, τ_s) имеет представление [6]

$$X_s = \bigcup_{P_s \in \mathcal{P}_s} \bigcap_{t \in P_s} X_t^s,$$

где X_t^s $(t \in P_s)$ наделены полуметризуемой топологией так, что ассоциированная ТВГ $X_{(P_s)}^s$ в X_s является полной МВГ, непрерывно вложенной в (X_s, τ_s) ; пусть $\rho_s^{P_s}$ – соответствующая квазинорма для $X_{(P_s)}^s$. Из теоремы о замкнутом графике для H-пространства следует, что семейство $\{\rho_s^{P_s}\}$ задает полное отделимое псевдотопологическое векторное пространство $(X_s, \rho_s^{P_s})$, непрерывно вложенное в (X_s, τ_s) . Покажем выполнение условия A) теоремы 4.

 $Om\ npomuвного.$ Предположим, что $(\rho_s^{P_s})^*$ не является непрерывным в фильтртопологии φ_F^s ни для одного $P_s \in \mathcal{P}_s$. Последнее означает, что для $P_s \in \mathcal{P}_s$ существует $\varepsilon = \varepsilon(P_s) > 0$ и $\varepsilon \in \mathbf{Q}$ такое, что $\hat{h}_{ss^*}X_{s^*} \not\subset V_{\varepsilon(P_s)}^*$, где $s^* \succ s$,

$$V_{\varepsilon}^* = \{ x \in X_s : (\rho_s^{P_s})^*(x) \le \varepsilon \}, \quad (P_s \in \mathcal{P}_s).$$

Несмотря на то, что семейство \mathcal{P}_s , вообще говоря, континуальное, среди множеств $V_{\varepsilon(P_s)}^*$ будет не более чем счетное число различных. Пусть это

Ярославский педагогический вестник. Серия Естественные науки. Вып. 1-2009 ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

будут множества $V_{\varepsilon_1}^*, V_{\varepsilon_2}^*, \dots$ Из представления H-пространства и построения следует, что

$$X_s = \bigcup_{n \in \mathbb{N}} \bigcup_{\lambda > 0} \lambda V_{\varepsilon_n 2^{-1}}^*$$

и, следовательно, в силу полноты ТВГ (X_s, φ_F^s) найдется $n_0 \in \mathbb{N}$ такое, что $V_{\varepsilon_{n_0}2^{-1}}^*$ плотно (в топологии φ_F^s) в некотором шаре топологии φ_F^s . Однако лебеговы множества V^* симметричные и замкнутые в топологии φ_F^s , поэтому существует $s_0^* \in |F|$ такое, что $\hat{h}_{ss_0^*}X_{s_0^*} \subset \bar{V}_{\varepsilon_{n_0}}^* = V_{\varepsilon_{n_0}}^*$, что противоречит выбору $\varepsilon = \varepsilon(P_s)$ $(P_s \in \mathcal{P}_s)$.

Теперь достаточность следует из теоремы 4. Предложение доказано.

В случае обратного спектра пространств Фреше теорема 5 обобщает критерий Φ) и P) следствия 11.4. В.П.Паламодова [1]. Заметим, что в теореме 5 фактически требуется отделимость псевдотопологии, поэтому H-пространство, вообще говоря, может быть неотделимым.

Теорема 6. Пусть $\mathcal{X} = \{X_s, \mathcal{F}, h_{s's}\}$ – счетный хаусдорфов спектр H-пространств c отделимой ассоциированной псевдотопологией $\{\rho_s^{P_s}\}^*\}$ над категорией TLC, сохраняющей непрерывность морфизмов $h_{s's}$. Тогда для того, чтобы $Haus^1(\mathcal{X}) = 0$, необходимо и достаточно, чтобы для кажедого $s \in |\mathcal{F}|$ существовала квазинорма $\rho_s^{P_s}(F)$ ($s \in |F|$) в X_s такая, что A') ($\rho_s^{P_s}$)* непрерывна в фильтртопологии φ_s^s , система $\{\rho_s^{P_s}\}$ сохраняет непрерывность морфизмов $h_{s's}$.

В частности, из теоремы 6 подучаем теорему Ретаха [9].

Библиографический список

- 1. Паламодов, В.П. Функтор проективного предела в категории топологических линейных пространств [Текст] // Мат. сб. -1968. T. 75, N 4.C. 567-603.
- 2. Паламодов, В.П. Гомологические методы в теории локально выпуклых пространств [Текст] // Успехи мат. наук. 1971. Т. 26, N 1. С. 3–65.
- 3. Смирнов, Е.И. Теория хаусдорфовых спектров и ее приложения [Текст] Ярославль, 1988. 178 с. Деп. ВИНИТИ 28.12.1988, N 9081–B88.
- 4. Смирнов, Е.И. О хаусдорфовом пределе локально выпуклых пространств [Текст] // Сиб. мат. журн. М., 1986. Деп. ВИНИТИ 28.12.86, N 2507–В.
- 5. Райков, Д.А. Двусторонняя теорема о замкнутом графике для топологических линейных пространств [Текст] // Сиб. мат. журн. 1966. Т. 7, N 2. С. 353–372.
- 6. Забрейко, П.П., Смирнов, Е.И. К теореме о замкнутом графике [Текст] // Сиб. мат. журн. 1977. Т. 18, N 2. С. 305–316.
- 7. Wilde M. Reseaus dans lrs espaces lineaires a seminormes // Mem. Soc. Roi. Sci. Liege. 1969. V. 18, N 2. P. 1–104.
- 8. Смирнов, Е.И. О непрерывности полуаддитивного функционала [Текст] // Мат. заметки. -1976. T. 19, N 4. C. 541-548.
- 9. Ретах, В.С. О сопряженном гомоморфизме локально выпуклых пространств [Текст] // Функц. анализ и его приложения. -1969.-T.3, N 4.-C.63-71.
- Nobeling C. Uber die Derivierten des Inversen und des Directen Limes einer Modulfamilie // Topology I. 1962. – P. 47–61.
- 11. Картан, А., Эйленберг, С. Гомологическая алгебра [Текст]. М.: Мир, 1960.
- 12. Смирнов, Е.И. Хаусдорфовы спектры в функциональном анализе [Текст]. М., 1994. 161 с.
- 13. Smirnov E.I. Hausdorff spectra and the closed graph theorem. Pitman Research Notes in Mathematics Series, Proceedings Volum, Longman, England, 1994, P.37–50.
- 14. Smirnov E.I. The theory of Hausdorff spectra in the category of locally convex spaces. Functiones et Aproximatio, XXIV, 1996, UAM, Poznan, Poland, P.17–33.