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HAUSDORFF SPECTRA AND SHEAVES OF LOCALLY
CONVEX SPACES

In the present article generalisation of the preparatory theorem by Vejershtrass and the global
theorem by Vejershtrass about division for sprouts of holomorphic functions in a point of n-
dimensional complex space are considered. The author formulates the global theorem about division
in terms of existence and a continuity of the linear operator.

Keywords: The global theorem by Vejershtrass about division, the theorem of the closed schedule,
sprouts of holomorphic functions, H-space.

Let {Su, puv} be a presheaf of abelian groups over a topological space D, €2 a nonempty
partially ordered set and § an admissible class for 2 (we may assume without loss of generality
that Q = |§|). Let us denote by H(S) a covariant functor from Ord Q to Ordi, where U is a
base of open sets in D, and by H (8) a contravariant functor from OrdU to the category of
abelian groups so that an abelian group Sy is defined for each U € U and a homomorphism
puv : Sy — Sy is defined for each pair U € V. Then H = H(S) o H(S) is a contravariant
functor of the Hausdorff spectrum X(S) = {Sy,, 3, pv, v, }, which we will call the Hausdor[f
spectrum associated with the presheaf {Sy, puv}. Let X be the H-limit of the Hausdorff
spectrum X' (S) in the category of abelian groups and let

A= U v

Feg se|F)
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Proposition 1. Let S be the sheaf of germs of holomorphic functions on an open set
D C C", associated with the presheaf {Sy,puv}, and let X(S) = {Su,,%,pv,v.} be the
associated true Hausdorff spectrum. Then the H-limit of the Hausdorff spectrum X (S) is
isomorphic to the vector space of sections I'(A,S) of the sheaf S over the set A.

Proof. By the conditions relating to {Sy, pyv}, we may put Sy = I'(U,S) (U € U).
Further, let

X =limpy,v,I'(Us, S),

WlET

so that

xX=JMNvvdH

FegTeF

If z € X, there exists F € § such that x € ¥(VZ) (T € F), that is to say, there exists a
selection

E(T) = (fJ )seir
such that ¢(fT) = x for each T € F. For any U € U, (2 € D) the homomorphism p.y :
['(U,S) — S. generates for f € I'(U,S) the set of points

Uf):Usz(f)CS

therefore let us put

= J oo ()

seT

it is clear that p! generates the section f7 on the open set Ur = |J .., Us, since the

correspondence

seT

oo
zeUpr—p, NS, CS
is single-valued and continuous. Moreover, if pyy : pv(g9) — pu(f), then py(f) C pv(g), so

let us put
U U mnlen).

F*-F *GIF*‘
seT

where necessarily

pu..v.(pu.(fD)) = pu.v,(pu. (fI)) (T.T € F).

Let us put
ﬂUg, where U¢ C | ) Us;

sE|F|

in this connection we have in partlcular,

pu.(f5) N pu (fF) o pu..u.(pu.(f1)) -

It is also clear that for each £ the correspondence

ZEU&'—)péﬂS
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is single-valued and continuous. Although, in general, it is not guaranteed that U, # 0,
we will show nevertheless that U,, D A under the conditions of the proposition, specifically
because the H-limit of the Hausdorff spectrum X'(S) is true. Let the selection {(7T) =
(fD)seir) (T € F) generating the element x € X be fixed. Then because the Hausdorff
spectrum X (8) is true we may assume that fI* = f72 (s € Ty N'Ty) and, consequently, there
exists & = (fs)sejr| € Npep V2 such that

v €Y((f)ir) and  fo=pu,u.(fs) (s,5€[F]).

It is clear that p; = U,cp pu,u,(fs). Now let 2 € A. Then z € U for any {(F) (F € §)
and, moreover,
P§:<z) = pi NS.=p.u.(fs) for 2€Us (selF]).

Let us show that p§(z) = pS(2) for any & ¢ In fact, let & = (f5)ir|, & = (fL)r and
r =€), 2’ = (&). Since £ ~ &, there exists F* € §, where F* = I’ and F* > F’, such
that for each 7% € F* we can find T' € F and T" € F’ such that

wpp T =T, wpp:T* =T and  py.uv,(fs) = pu.v, (fo),

where s* € T™. However, z € US*G‘F*‘ Us+, and so it remains to choose sj € |F*|, such that

z€Ug and p,(fs) = pu, (fo) (87— 5,8 = s').

Thus z € U,,. Furthermore, let us put z(z) = p5(z)|a, so that z(z) is a section of S on
A, x(z) € I'(A,S). In this way we have constructed a morphism H : X — I'(4, S). Given
fa = H(z), fa = H(y), let us prove that x = y. In fact, at each point z € A there exists
an open ball B(z,¢€) of the local homeomorphism 7 : & — D at the point fa(z). Let us
put U = J,.4 B(2,€¢/2) and determine the section f, € I'(B(z,€/2),S) passing through the
point s = fa(z) € S such that

fzla = falBze2)

(we note that € = €(2)). Let
Bij:B(zi,ei/Q)ﬂB(zj,ejﬂ), BZJQA#Q), ZoeBZ‘ij

for some z;,z; € A. Then f.,(20) = f.,(20), and, consequently, there is an open ball By C
B(zp,€0/2) of the local homeomorphism at the point sy = f.,(20) such that By C B;; and
fulBy = [f2|B,- However, because of the isomorphism I'(B;;,S) — Sg,, the holomorphic
functions f., and f., coincide on the connected open set B;; [1, Theorem A6]. The last
observation means that f,, B,;- Now suppose that

Bij = ij

Clearly, we will obtain by similar reasoning [ |p;, = [, |p;,- But we have B2 = fa
and f;j]B(zj,ej/Q) = f.;, so that f.|g, = f.,|B, (in the case where B;; # (). Now there
remains the third possibility for B;; # (), namely when Bj; N A = (). In this case the sections

[z [z, on B;; do not necessarily coincide, therefore let us put M = J Bj;, where the bar
denotes closure in C" and the union is taken over all B;; of this third type. It is clear that
M N A= (), since in the contrary case for z* € M N A there would exist B;; of the third type
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such that z* € Bjj’, which is impossible by construction. Let us put U(f4) = U\M, so that
U(fa) D Aand U(f4) is an open subset of C". Then there exists f € I'(U(f4),S) such that

fla = fa and, moreover,

FluganBie2) = flugaonBeeg (2 € A);

also the section on U(f4) of f with the property f|a = fa is uniquely determined (nevertheless,
¢4, the corresponding holomorphic function on A, is extended holomorphically to U(f4) in
a manner which, in general, is not unique).

Now if ¥(§) = =z, ¥(n) = y, it follows from the fact that the family of open sets
{Uscr) Us}reg is fundamental for A that there exists F™* € § such that U(fa) D Up. Us-,

and moreover by construction

p§|UF* Ugs — pZ|UF* Ugx -

The last assertion means that & ~ 7 and, consequently, x = y. Moreover, the fact that
{UpUs}peg is fundamental for A and the constructions carried out above allow us to
conclude that H : X — I'(A,S) is an isomorphism. The proposition is proved. O

The absence of sufficiency restrictions on |§| in Proposition 1 allows us to apply it to any
nonempty A C C": it is enough to take § = |§| and U; (s € §) a fundamental system of open
sets containing A (in general, of uncountable cardinality). The investigation of topological
properties of H-limits in this case produces substantial difficulties, therefore the investigation
of I'(A,S) with no more than countable |§| is of interest. It is clear that, for example, any
closed bounded set A C C" will be of this type, and the space of sections I'(A,S) is the
inductive limit of the sequence of spaces I'(Us,S) (s € |§|). Furthermore, the corresponding
Hausdorfl spectrum {I'(Us, S), 3, pv,v,} will be true in this case. In general, the Hausdorff
spectrum X(S) will be true if all open sets Us (s € |§|) are connected. We recall that each
space I'(Us, S) can be given the separated locally convex topology of uniform convergence
on the compact subsets of Us (s € |§|), under which it is a Fréchet space; we will denote this
topology by 7.

Proposition 2. Let X(S) = {['(Us,S), 3, pu,uv.} be a true countable Hausdorff spectrum
and suppose that A = ﬂg UrUs has a countable fundamental system of compact sets, is

° —
connected and A# (). Then the H-limit X = lim py,u,I'(Us, S) is a separated H-space in the
H

3
topology T and is continuously embedded in O4 (O, is the algebra of holomorphic functions
on A).

Proof. First of all, by Proposition 1 we have the isomorphism H : X — T'(4,S);

because of the connectedness of A and the fact that A% () each holomorphic function on A,
¢ € Oy, is generated by some holomorphic function on the open set U(¢); moreover, any
two holomorphic functions ¢; € Oy and ¢y € Oy (U D A,V O A) which coincide on A
must coincide on a connected component of the intersection U NV (see [1, p. 104]), which
also implies the isomorphism I'(A,S) = O4. Since A has a countable fundamental system of
compact subsets

K, n=12,...), KfCKyC...,

on putting
16]ln = max[é(2)] (¢ € Oa),
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we obtain a seminorm on Q4 (or on I'(A, S), which is permissible according to the construction).
Furthermore, on putting

L+ {[9]|n

for example, we obtain a quasinorm on O, under which O4 becomes a separated locally
convex space with a countable base of neighbourhoods of zero, therefore metrizable, but in
general not complete; we will denote this space by (Oa,p).

We now show that on Q4 the locally convex topology 7% of the H-limit of the Hausdorff
spectrum X (S) is not weaker than p. In fact, let W = {¢ € O4 : ||¢||n < €} be some
neighbourhood of zero in (Oy4,p) and let F' € §. Let us choose s¢ € |F| such that Uy, D Ky
— this choice turns out to be possible because of the compactness of Ky and the condition
A C UpUs; also we can find a compact set K9, C Uy, such that K D Ky — here the choice
is possible because of the availability of a fundamental system {K°}>°, in U,,. Now it is
clear that

pi) =S o Ml e o)

Hoyp(M")C W,

where

§= (fS)F7 MF:{gevl:jo: 661;(% |f30(z)| <6}7 /How(ﬁ) =9, f80|A:¢'

Since (M?F) is itself a neighbourhood of zero in the MVG Xy and F' € § was chosen
arbitrarily, we have that
H(COU¢(MF)) cw
5
and is a neighbourhood of zero in the topology 7*. This also shows that 7* > p. The
proposition is proved. [J

The conditions of Proposition 2 are satisfied, for example, by A = A(0,r), the compact
polydisk in C", or by any domain D C C". It is not difficult to see that if A is a connected
set and A = [, Up Us, where § is an admissible class for 2, then without loss of generality
we may assume that the U (s € |§|) are connected open sets in C". In fact, let each U, have
nonempty intersection with A, which is natural and can always be arranged by the method
of transformation of indices (s € |§|). Let us denote by U the open connected component
of U, which contains U, N A (s € []). Now it is clear that A =, Uy U, for the admissible
class § in Q and moreover, if {{J, Us}; were a fundamental system of neighbourhoods for
A, then {Ur U,}; would be the same. Now let us consider the question: For what classes of
sets A C C" do we have a representation

a=nUe
FegseF

where § is an admissible class for © (a countable set)?
Let A be any nonempty bounded connected subset of C" and B = B(zp,r) an open ball
such that A C B. By Proposition 3.2 for the s-set B\ A we have the representation

B\A= ] (L,

Bek teB
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where the L, are open subsets of B(zo,7) (¢ € |K|, |[K| a countable set) and K is some family
of subsets B C €2; moreover, for each B € K the intersections {Nz Lt} form a fundamental
system of Compact subsets of B\ A. Since C" is a finite-dimensional space, by Proposition
3.10 we will obtain the representation

B\A= ] L,

BeK teB

where the L, C B(z,7 + €) are compact sets (t € |K|). Now
A=B\JNZ.=B\(IL) = ﬂU B\L,),
K B K B B

and G; = B\L; is an open set in C" (¢t € |K|). We will show that {Uz Gy} form a
fundamental system of open connected neighbourhoods of A. In fact, if W D A, W C B is
an open set, then without loss of generality we may assume that W C B(zg,r — §) for some
0 >0, so that P = (B(z9,r — ) UIB)\W is a compact subset of B(zy, ). Therefore there
exists a compact subset [z, L= B, Lt such that P C (3, L, and, consequently,

B\P> | J(B\L) or WU{z:r—d<|z—2|<r}D|JG D JG:.
E() EO EO
However, because of the connectedness of G, and the ordering of EO € K we obtain the

inclusion W O (Jg, G, which was to be established.
Thus we obtain the following

Proposition 3. Fvery connected bounded subset A C C" has a representation

A:ﬂUU57 (6)

Fegsel

where § is an admissible class for the countable set Q) and the Uy are connected open subsets
(domains) in C".

In particular, for such a set A the Hausdorff spectrum

X(8) ={l(Us,S).%. pu,v.}

is true (it suffices to apply the uniqueness theorem for holomorphic functions). In the
representation (6) it is natural to require that if U, N Uy # 0 (s,8 € |§|) then it is a
connected set. Only such sets A will be considered further.

In what follows the space Q4 of germs of holomorphic functions on A will be provided
with the topology p (in general not separated) of uniform convergence on the compact subsets
of A and with the locally convex topology of the H-limit. As has already been noted above
(Proposition 1), for a connected bounded subset A C C" we have the linear isomorphism

X=T(A8)=0,4

We also note that if the set A has an interior point then O, coincides with the space of
holomorphic functions on A (up to isomorphism).
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Weierstrass’s Global Division Theorem

Weierstrass’s preparation theorem and the division theorem for germs of holomorphic
functions at a point w € C™ allow us to establish a series of properties of local rings ,O,, and
modules over these rings (Noetherian, Oka’s Lemma on the exactness of homomorphisms
of ,O-modules, etc. [1]). The proofs have a number of algebraic characteristics, therefore
consideration of a global variant of the theorems is significantly different and uses topological
results of linear analysis (see, for example, [1]). A more careful analysis makes it possible
to formulate a global division theorem in terms of the existence and continuity of a linear
operator acting on locally convex spaces so that the local and global variants of Weierstrass’s
theorem turn out to be in fact special cases of a more general theorem. In this section we
obtain a stronger form of Theorems I1.B.3 and I1.D.1 in [1] for the case of H-spaces. C™!
denotes C X -+ X CXC X -+ X C and 7, : C" — C' is the projection of C" onto C;*';

m—1 n—m

at the same time 7™ : C" — C,, and C" = C™ ! x C,, so that 7™ is the projection of C"

onto C,,. For notational convenience in what follows the germ of a holomorphic function is
denoted by capital Roman letters F, G, H, ... .

We will say that the germ H € O4 (A C C") is a w-local Weierstrass polynomial in z,,

(1 < m < n) of degree k (k > 0) if there exists w € A and a function h € H which is

holomorphic on an open neighbourhood U O A and has representation on U

h(z) = (zm—wn)*+a1(2) (2 —wp)* "t + -+ ap(?),

/ —
z - (zla227'"7Zm—lvzm+17"'azn)7

(7)

where the a;(2') are holomorphic functions on 7,,(U), a;(w’') = 0, and w = w' X w,, (j =
1,2,...,k). It is clear that the holomorphic function h is regular of order k in z,, at the
point w € A.

Theorem 1. (Weierstrass’s global division theorem.) Let A C C" be a nonempty connected
bounded set such that 7™ (A) is closed and let H € O, be a w-local Weierstrass polynomial
in zm of degree k (k > 0) with representation hy € H such that

{zemn tom,(A)NU: hy(z) =0} C A.
Then there exists a continuous linear operator L : O4 — O4 x O 4, where

L(F)=(G,P), F=GH+P,
(221 P e Qy.

First of all we recall [1, Chapter 2, §5] that O4 has the topology p of uniform convergence
on the compact subsets, which in general is neither separated nor complete, and Oy x Oy
has the usual product topology. In the course of the proof of Theorem 1 O4 will also be
given another stronger locally convex topology, again in general not separated, under which
it is an H-space. Therefore we first present a lemma for Theorem 1.

Lemma 1. Let A : X — Y be a closed linear operator, where X is an H-space under
the locally convex topology T and (Y, o) is an H-space (in general X, Y are not separated
spaces). Then A is continuous.
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Proof. Let M, N be the respective nonseparated parts of X, Y and X/M, Y/N the
separated quotient spaces with quotient maps £ : X — X/M and n: Y — Y/N. Then the
quotient topology £7* on X/M is in general weaker than the topology (£7*)*, the limit of the
corresponding Hausdorff spectrum (see, for example, [4]); let no be the quotient topology on

Y/N. Then the diagram

X/M > Y/N
1
X 1.y

is commutative and the induced mapping A* exists because of the closedness of the operator

A. In fact, the closedness of A implies that N = ﬂ {U+ AV}, where U, AV are bases of

Ueu,vev
neighbourhoods of zero for the topologies o, AT* respectively. But AM C AV for any V € V

and 0 € U, therefore AM C U + AV (V U, V) and, consequently, AM C N. Moreover, the
induced mapping A* is clearly linear; we will show that A* is a closed operator. For this we
have to show that
0= () {(U+A4¢v}.
UeU,Vey

Since nA = A*¢, this is equivalent to the relation 0 = (7, , n{U + AV} ; let us suppose that
a € Ny yMU+AV}. Then n~tanN(U+AV) # 0 (V U, V). But 'a = y+ N and because of
the absolute convexity of U+ AV and Theorem 1.3 of [2] we obtain n™'a C U+ AV (VY U, V).
This implies that n7'a C N ; consequently a = 0 and A* is a closed operator.

Thus by the Closed Graph Theorem for the H-space (Y/N,no) and complete MVGs
the closed operator A* is continuous from (X /M, ({7%)*) to (Y/N,no). The existence of the
Hausdorff spectrum for (Y/N,no) follows from Proposition 4.10 and [4].

Now we will establish the continuity of the operator A : X — Y. Let W be a closed
absolutely convex neighbourhood of zero in Y and (V') a base of absolutely convex
neighbourhoods of zero in the TVG X gy (F € §), where

If it is shown that A : Xy — Y is continuous, then by the definition of the topology 7*
and the local convexity of (Y, o) this will imply that A : X — Y is continuous. Therefore let
F € § be fixed. Then (£V;F) is a base of neighbourhoods of zero for the TVG (X/M)r) (see
Proposition 4.10) and nW is a neighbourhood of zero in (Y/N,no). By the commutativity
of Diagram (8) A*¢VF = nAVF (Yn € N) and by the continuity of A* there exists N € N
such that A*¢VE C nW or nAVE C nW. Hence, AVE C W + N, but since W is a closed
set and N C W, then W + N C W and the continuity of A : Xz — Y is established. This
means that A : X — Y is continuous and the lemma is proved.

Lemma 2. Let L : (Oa,p) — (Oa,p) be a closed linear operator. Then L : (Oa,p*) —
(O4,p*) is continuous (A is a nonempty connected bounded subset of C").
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Proof. We recall that the locally convex topology p* of the H-limit of a Hausdorff
spectrum on the space of germs of holomorphic functions on A is not weaker than the
locally convex topology p of uniform convergence on the compact subsets of A. Therefore
the operator L : (O4,p*) — (O4,p*) is closed. Moreover, by Proposition 3.10 the set A has

a representation
A= ﬂ U Us7
Feg seF

where § is an admissible class for the countable set 2 and U, is a domain in C™; moreover,
each Us (s € |§|) has a countable fundamental system of compact subsets (K72)>, with
K} C K5 C .... We will show that each space (O4)p) (F' € §) is complete and so (O, p*)
is an H-space.

We recall that

xX=J e
Feg seF
and k : X — I'(A,8) = Oy is an isomorphism. The TVG (O,)(r) is an isomorphic image
of the restriction of the complete TVG of countable character S (notation of 3.2) to X.
Therefore it is enough to establish the closedness of £7'(Oa)py in S(p) . The arguments are
carried out more easily for the germs of holomorphic functions on A.

Let F €3, Upr DA Up = UseF Us (F' is no more than countable and is totally linearly
ordered for s). Further, let (G,) be a sequence of germs of holomorphic functions on A
which is fundamental in (O4)). Since (O4)py is a quotient group (up to isomorphism)
of the complete MVG ([[; Ouv,)(r), where Oy, is the Fréchet space with the topology of
uniform convergence on the compact sets (K7)5°, it follows from Proposition 4.10 that there
exists a subsequence g,, € [[-Ovy, (kK = 1,2,...) such that g,, converges in (][, Ouv,)r
to some element g € [[ Oy, and g, = G,, (k=1,2,...). The last condition implies in
particular that g, = (fi"*)ser, where fl*[y, = fi* (s <p,p€ F),p=p(k), (k=1,2,...).
Put py = infy p(k), po € F. Then, clearly, fi*[y, = fI* (s < po, k = 1,2,...); we will
denote by fy = f* the holomorphic functions on the open connected set Uy, (k=1,2,...).
Since limy_,o gn, = g and g = (§s)ser, then, in particular, f; converges to g,, in Ou,, and
moreover g — g, € Vj (s € F,ng = nk(s),l = 1,2,...). The last observation means
that for s > py the holomorphic function g,, — fnkl has a unique extension to the set U,
(s € F). However, each element g, is equivalent to elements ay € HFk Ou,, i.e. Ygp, = Yay
and moreover ay, € (,cp Vi, (K = 1,2,...). Furthermore, we may assume without loss of
generality that /7 < F5 < .... Thus the holomorphic function f,, has a unique extension
to the set UFk, D A(l =1,2,...) and, consequently, the holomorphic function g,, has a
unique extension to the set Us N Up, (s > po, s € F'). Since U; NUp, = quFkl(US NU,) and
UsnNU, CU;NUy (g <), then Us N U, is a connected open set (I =1,2,.... k = k(s)),
and since the set {s € F': s > po} can be enumerated, let its points be sy, s9,. ...

Thus on each nonempty open connected set Ug; N UFkl a holomorphic function g,,s is
defined such that Gp.slv,, = Gpy (5 > po,s € F). But since each nonempty intersection
(U NUR,)N(Us,NU ij) is connected by construction and has nonempty intersection with

Upy, then a holomorphic function ¢ is defined on the open set (J;Z,(Us, N Ug, ) such that
9lo,,vs, = Gpes: (i = 1,2,...). Then g|y,. generates an element of () . V. such that
g = ¥ §|u, and, consequently, g = G € O and lim,,_,o, G,, = G in the TVG (O4)(p) . Thus

the space (Oa)(r) is complete and (O, p*) is an H-space (Up- C U2, (U, NUR, ), F* € 3).
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Continuity of the operator A now follows from the Closed Graph Theorem, Lemma 1 and
the closedness of the operator A : (Oy4,p*) — (Oa,p*). The lemma is proved.

Proof of Theorem 1. Let H € O4 be a w-local Weierstrass polynomial in z,, of degree k
and let h € H be a holomorphic function on the open connected set U D A which satisfies
the conditions of the theorem and the relation (7). Furthermore, let F' € O4 be an arbitrary
germ, let f € F and suppose that f is a holomorphic function on the domain V' C U; (it
may be assumed without loss of generality that U; C U). Let us fix a point a’ € 7,,(A)
and a closed (according to the condition) cross-section 7,(A) C r.(U) and choose a closed
piecewise-smooth Jordan contour I',s which encloses r,/(A) and lies in r, (V') and has length
[(I's). Since the function h(z) is continuous on the open neighbourhood of the compact set

Q={z€V:z,€ly, mn(z) =d},

there exists an open ball B(0,0) such that for z,, € I'y and 2’ € m,[(d, zn) + B(0,9)] we
have the inequality
[1(2) = h(d, zn)| < inf |R(a’, 2m)] (9)

and the inclusion
(a',zm) + B(0,6) CV (2 €Tw).

Moreover, by the compactness of @ we can choose a polydisk A'(0,4",) C € ! such that

s Yal

o + A(0,8,)] x T € | (@', zm) + B(0,5)]. (10)

Zm EFa/

In fact, we cover the compact set () with the open balls (¢/, z,,) + B(0, ) (2, € T'w), in each
of which we choose a polydisk (a’, zp,) + 2A(0,04/) (2m € Ty 60 = (02, 6,,)) with these taken
together also covering ). Put Ry = o' + A'(0,6!,). Then

U (@, 2m) + 200,60)] = [ | (2 + 2(0,60))] X Rwr D T X Ry ,

Zm Era/ Ty

from which (10) follows.

The inclusion (10) allows us to conclude in particular that (9) and the inclusion I'y C
r.(V) are valid for 2z’ € R, . Now for the indicated 2’ € R, the function h, = h(Z, z,,)
as a holomorphic function of one variable z,, has exactly k zeros inside the contour I'y; by
Rouché’s Theorem for the domain r./(V) Ny (V) ; in particular, k. # 0 on 'y and outside
this contour in the domain r,/(V) (and even r..(U)).

We will denote by D, the domain bounded by I',; and put

D= |J (DuxRa).

a’'€mm (A)

It is clear that D is an open connected set such that AC D CV C U;.
Further, for each open set Dy x Ry (a' € 7, (A)) we define a holomorphic function (see
[1]) /
1 f(Z.¢) dC

) =5 Jo RO T
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and a holomorphic function py(2) = f(z) — gu(2)h(z). Therefore

L[ A0 [HEQ — (2 )
o) =g [, 30 | dC

C — Zm
where
k—1
pa’<z> = Zpa; (Z/)(Zm - wm)j )
=0
1 MENG)

Pa Py f(zlvg)dg (j:(),l,...,k;—l),

i 2mi r, M. Q)
and the holomorphic functions 3 (j = 0,1,...,k — 1) are defined from (7) by consideration
of the expression

h(z',C) — h(2, zm)
¢ — 2m .
The uniqueness of the functions g, and p, is established similarly to [1, p. 93] by using
Rouché’s Theorem.
If (Da/ X Ra/) N (Da// X Ra//) 7é @, then for z € (Da/ X Ra/) N (Da// X Ra//) we have
Zm € Dy N Dyr. Because the contours 'y and I'yr are homotopic this implies that the
following identity holds:

/ Q) dC :/ fE.Q)  d¢
Fa’ h(’%/’ <) C - ’2m Fa// h‘('%/? C) C - ’gm
Thus g+ (2) = gar(2) and, consequently, a holomorphic function g(z) can be defined on

the domain D such that g|g,«p, = g« (¢’ € mn(A)). In the same way a holomorphic
function p(z) can be defined such that p|r ,«p, = pw (@' € 7,,(A)) and

so that we have the unique representation

f(z) = g(2)h(z) +p(z) (z€D). (11)

Thus a linear operator L : O4 — Oy x Oy is defined by the relation L(F) = (G, P),
F=GH+ P, feF,geG,he H, pe P. The operator L has components L, : I — G
and Ly : F' — P, whose continuity in the respective topologies will also imply that of L. Let
us therefore investigate the continuity of the operators L; and L.

It follows clearly from the relation (11) that L; and Ly are closed linear operators from
(O4,p) into (O4,p). Thus by Lemma 2 the operator L; : (O4,p*) — (Oa,p*) is continuous
(1 =1,2), as also is the operator

L:(04,p") = (0a,p") x (Oa,p").

We now establish the continuity of the operator L : (O4,p) — (Oa,p) X (Oa,p). First of
all, let us fix an open set D" constructed be the method indicated above for the holomorphic
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function h(z) on the domain U; ; then by the compactness of A we choose a finite subcover
Uy, (R, xD",), where by the construction it may be assumed without loss of generality that

on the distinguished boundary of the polydisk Rh the function h(z', () = 0 only for ¢ € Dh
(1t = 1,2,...,N). Therefore h(z) # 0 on the dlstlngmshed boundary of the polydomaln

Rl x DZ , which is part of the boundary of the domain UZ.:1 (RZ X DZ) U, . If we now
put K2 k2
h*
M = sup sup M :
SISk Gy (R et (2/,¢)
then M < 4-o0.

Now let F' € Oy, Li(F) = G, Ly(F) = P and choose f € F' with domain of definition
V' C Uy ; construct the domain D/ C V such that Df C V, while the functions p(z) and g(z)
are defined on D/ (p € P, g € G) and the relation (11) holds. Tt is clear that D/ D A and
the following diagrams are commutative:

T .

f——p
We will establish the continuity of the operator L, :
being obvious. Let ' € 7,,,(A). Then

T

> g
O4a,p) — (Oa,p), the continuity of L,

f
pe()] < KX ()] < K220 50 e
<

KA supgsy | £(2, )] - 1(T).
Now we choose a sequence V1 V > V5 D ... which is fundamental for A and compact

sets D,, = D%, where Df C V,, such that A = N lDf and, moreover, the sequence
(D,,) converges to A in the Hausdorff metric for all compact subsets of C". This means in
particular that for f € Oy, we have the relation

lim sup | f(z)] <sup|f(2)|.

m

In fact, let us assume the contrary, i.e. there exist € > 0 and a sequence (my) such that

sup f(2)] + e <sup |f(2)] (K €N).

Don),

From this we find a sequence (z,,, ) such that z,, € D,,, and

sup [ f(2)] + € < [f(am)] (k€N

but then we can find a subsequence (2, ) such that z* = llim Zmy, - Then z* € A and,
—00

consequently, we have the inequality

%pU@ﬂ+€§Lﬂfﬂa
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which is impossible.
Therefore

1P[|a sup 4 [p(2)|

mm—ﬂm_suPDm p(2)] :_lmm—mo Supp,, |par(2)|
K-2]7Vr1-k im0 [(I7}) - limyy o0 sUpp | f(2)]

Ka-la-supy|f(2)] = Ka-la-||F]|a.

INIAIA I

Thus the operator Ly : (O4,p) — (Oa,p) is continuous. The theorem is proved. [J
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10.B. Bonagapenko

CUJIbHOE YCJIOBUE IIIOKE /1J151 KOHYCOB B [IPOCTPAHCTBE
OVHKIINN

B macrogmieit ctatbe mpuBeIeHBI HEKOTOPBIE TEOPEMbBI O TPEICTABICHIH KOHYCOB B MPOCTPAH-
cree dyukimii Ha (0;7). DT KOHCTPYKIIMH HABESHBI, ¢ OJHON CTOPOHBI , KJIACCHIECKOH TeopeMoii
Kapareonopu-MuHKOBCKOTO 0 TIpeICTABICHUN DIEMEHTOB KOHYCa 4epe3 KpaiHue TOYKM , & C APY-
roif CTOPOHBI, - KOHCTPYKIUSAMU U3 paboT, TOCBSAIIEHHBIX OIEPATOPHOMY HPEICTABIEHUIO KOHYCOB
yOBIBAIOIINX W BOTHYTHIX (DYHKIINI B BECOBOM ITPOCTPAHCTBE.

Karoueswie caosa: konyc B npocrpancTse QyHKIM, KpaifiHue Jiy4un, BECOBbIE IPOCTPAHCTBA, KO-
Hyca yOBIBAIOIINX ¥ BOTHYTBIX (DYHKITHI.

Ju.V.Bondarenko
STRONG CONDITION SHOKE FOR CONES IN SPACE OF FUNCTIONS

Some theorems about representation of cones in function spaces on (0;7) are considered. We use
the classical Karatheodory — Minkowski theorem about representation of cone elements by extremal
points and operator representation of cones of monotone and concave functions in weight spaces.

Key words: cones in function spaces, extremal points, weight spaces, cones of monotone and
concave functions.
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