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ХАУСДОРФОВЫ СПЕКТРЫ И ПУЧКИ ЛОКАЛЬНО ВЫПУКЛЫХ
ПРОСТРАНСТВ

В настоящей статье рассматриваются обобщения подготовительной теоремы Вейерштрасса
и глобальной теоремы Вейерштрасса о делении для ростков голоморфных функций в точке
n-мерного комплексного пространства. Автор формулирует глобальную теорему о делении в
терминах существования и непрерывности линейного оператора.

Ключевые слова: глобальная теорема Вейерштрасса о делении, теорема о замкнутом гра-
фике, ростки голоморфных функций, H-пространства.

E.I. Smirnov

HAUSDORFF SPECTRA AND SHEAVES OF LOCALLY

CONVEX SPACES

In the present article generalisation of the preparatory theorem by Vejershtrass and the global
theorem by Vejershtrass about division for sprouts of holomorphic functions in a point of n-
dimensional complex space are considered. The author formulates the global theorem about division
in terms of existence and a continuity of the linear operator.

Keywords: The global theorem by Vejershtrass about division, the theorem of the closed schedule,
sprouts of holomorphic functions, H-space.

Let {𝒮𝑈 , 𝜌𝑈𝑉 } be a presheaf of abelian groups over a topological space 𝒟, Ω a nonempty
partially ordered set and F an admissible class for Ω (we may assume without loss of generality
that Ω = |F|). Let us denote by �̂�(𝒮) a covariant functor from Ord Ω to Ord𝒰 , where 𝒰 is a
base of open sets in 𝒟, and by �̌�(𝒮) a contravariant functor from Ord𝒰 to the category of
abelian groups so that an abelian group 𝒮𝑈 is defined for each 𝑈 ∈ 𝒰 and a homomorphism
𝜌𝑈𝑉 : 𝒮𝑈 → 𝒮𝑉 is defined for each pair 𝑈 ⊂ 𝑉 . Then 𝐻 = �̌�(𝒮) ∘ �̂�(𝒮) is a contravariant
functor of the Hausdorff spectrum 𝒳 (𝒮) = {𝒮𝑈𝑠 , F, 𝜌𝑈𝑠′𝑈𝑠}, which we will call the Hausdorff
spectrum associated with the presheaf {𝒮𝑈 , 𝜌𝑈𝑉 }. Let 𝑋 be the 𝐻-limit of the Hausdorff
spectrum 𝒳 (𝒮) in the category of abelian groups and let

𝐴 =
⋂︁
𝐹∈F

⋃︁
𝑠∈|𝐹 |

𝑈𝑠 .
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Proposition 1. Let 𝒮 be the sheaf of germs of holomorphic functions on an open set
𝒟 ⊂ C𝑛, associated with the presheaf {𝒮𝑈 , 𝜌𝑈𝑉 }, and let 𝒳 (𝒮) = {𝒮𝑈𝑠 , F, 𝜌𝑈𝑠′𝑈𝑠} be the
associated true Hausdorff spectrum. Then the 𝐻-limit of the Hausdorff spectrum 𝒳 (𝒮) is
isomorphic to the vector space of sections Γ(𝐴,𝒮) of the sheaf 𝒮 over the set 𝐴.

Proof. By the conditions relating to {𝒮𝑈 , 𝜌𝑈𝑉 }, we may put 𝒮𝑈 = Γ(𝑈,𝒮) (𝑈 ∈ 𝒰).
Further, let

𝑋 =
←−
lim
−→
F

𝜌𝑈𝑠′𝑈𝑠Γ(𝑈𝑠,𝒮) ,

so that
𝑋 =

⋃︁
𝐹∈F

⋂︁
𝑇∈𝐹

𝜓(𝑉 𝑇
𝐹 ) .

If 𝑥 ∈ 𝑋, there exists 𝐹 ∈ F such that 𝑥 ∈ 𝜓(𝑉 𝑇
𝐹 ) (𝑇 ∈ 𝐹 ), that is to say, there exists a

selection
𝜉(𝑇 ) = (𝑓𝑇

𝑠 )𝑠∈|𝐹 |

such that 𝜓(𝑓𝑇
𝑠 ) = 𝑥 for each 𝑇 ∈ 𝐹 . For any 𝑈 ∈ 𝒰𝑧 (𝑧 ∈ 𝒟) the homomorphism 𝜌𝑧𝑈 :

Γ(𝑈,𝒮) → 𝒮𝑧 generates for 𝑓 ∈ Γ(𝑈,𝒮) the set of points

𝜌𝑈(𝑓) =
⋃︁
𝑧∈𝑈

𝜌𝑧𝑈(𝑓) ⊂ 𝒮 ,

therefore let us put
𝜌𝑇𝑥 =

⋃︁
𝑠∈𝑇

𝜌𝑈𝑠(𝑓
𝑇
𝑠 ) ;

it is clear that 𝜌𝑇𝑥 generates the section 𝑓𝑇 on the open set 𝑈𝑇 =
⋃︀

𝑠∈𝑇 𝑈𝑠, since the
correspondence

𝑧 ∈ 𝑈𝑇
𝑓𝑇

↦−→ 𝜌𝑇𝑥 ∩ 𝒮𝑧 ⊂ 𝒮
is single-valued and continuous. Moreover, if 𝜌𝑈𝑉 : 𝜌𝑉 (𝑔) ↦→ 𝜌𝑈(𝑓), then 𝜌𝑈(𝑓) ⊂ 𝜌𝑉 (𝑔), so
let us put

𝜌𝜉𝑥 =
⋃︁

𝐹 *≻𝐹

⋃︁
𝑠* ∈ |𝐹 *|
𝑠 ∈ 𝑇

𝜌𝑈𝑠*𝑈𝑠(𝜌𝑈𝑠(𝑓
𝑇
𝑠 )) ,

where necessarily

𝜌𝑈𝑠*𝑈𝑠(𝜌𝑈𝑠(𝑓
𝑇
𝑠 )) = 𝜌𝑈𝑠*𝑈𝑠(𝜌𝑈𝑠(𝑓

𝑇 ′

𝑠 )) (𝑇, 𝑇 ′ ∈ 𝐹 ) .

Let us put
𝑈𝜌𝑥 =

⋂︁
𝜉

𝑈𝜌𝜉𝑥
, where 𝑈𝜌𝜉𝑥

⊂
⋃︁
𝑠∈|𝐹 |

𝑈𝑠 ;

in this connection we have in particular,

𝜌𝑈𝑠(𝑓
𝑇
𝑠 ) ∩ 𝜌𝑈𝑠(𝑓

𝑇 ′

𝑠 ) ⊃ 𝜌𝑈𝑠*𝑈𝑠(𝜌𝑈𝑠(𝑓
𝑇
𝑠 )) .

It is also clear that for each 𝜉 the correspondence

𝑧 ∈ 𝑈𝜌𝜉𝑥
↦→ 𝜌𝜉𝑥 ∩ 𝒮𝑧
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is single-valued and continuous. Although, in general, it is not guaranteed that 𝑈𝜌𝑥 ̸= ∅,
we will show nevertheless that 𝑈𝜌𝑥 ⊃ 𝐴 under the conditions of the proposition, specifically
because the 𝐻-limit of the Hausdorff spectrum 𝒳 (𝒮) is true. Let the selection 𝜉(𝑇 ) =
(𝑓𝑇

𝑠 )𝑠∈|𝐹 | (𝑇 ∈ 𝐹 ) generating the element 𝑥 ∈ 𝑋 be fixed. Then because the Hausdorff
spectrum 𝒳 (𝒮) is true we may assume that 𝑓𝑇1

𝑠 = 𝑓𝑇2
𝑠 (𝑠 ∈ 𝑇1 ∩𝑇2) and, consequently, there

exists 𝜉 = (𝑓𝑠)𝑠∈|𝐹 | ∈
⋂︀

𝑇∈𝐹 𝑉
𝑇
𝐹 such that

𝑥 ∈ 𝜓((𝑓𝑠)|𝐹 |) and 𝑓𝑠′ = 𝜌𝑈𝑠′𝑈𝑠(𝑓𝑠) (𝑠, 𝑠′ ∈ |𝐹 |) .

It is clear that 𝜌𝜉𝑥 =
⋃︀

𝑠∈|𝐹 | 𝜌𝑈𝑠′𝑈𝑠(𝑓𝑠). Now let 𝑧 ∈ 𝐴. Then 𝑧 ∈ 𝑈𝜌𝜉𝑥
for any 𝜉(𝐹 ) (𝐹 ∈ F)

and, moreover,
𝜌𝜉𝑥(𝑧) = 𝜌𝜉𝑥 ∩ 𝒮𝑧 = 𝜌𝑧𝑈𝑠(𝑓𝑠) for 𝑧 ∈ 𝑈𝑠 (𝑠 ∈ |𝐹 |) .

Let us show that 𝜌𝜉𝑥(𝑧) = 𝜌𝜉
′

𝑥 (𝑧) for any 𝜉, 𝜉′. In fact, let 𝜉 = (𝑓𝑠)|𝐹 |, 𝜉′ = (𝑓 ′𝑠′)|𝐹 ′| and
𝑥 = 𝜓(𝜉), 𝑥′ = 𝜓(𝜉′). Since 𝜉 ∼ 𝜉′, there exists 𝐹 * ∈ F, where 𝐹 * ≻ 𝐹 ′ and 𝐹 * ≻ 𝐹 ′, such
that for each 𝑇 * ∈ 𝐹 * we can find 𝑇 ∈ 𝐹 and 𝑇 ′ ∈ 𝐹 ′ such that

𝜔𝑇𝑇 * : 𝑇 * → 𝑇 , 𝜔𝑇 ′𝑇 * : 𝑇 * → 𝑇 ′ and 𝜌𝑈𝑠*𝑈𝑠(𝑓𝑠) = 𝜌𝑈𝑠*𝑈𝑠′
(𝑓 ′𝑠′) ,

where 𝑠* ∈ 𝑇 *. However, 𝑧 ∈
⋃︀

𝑠*∈|𝐹 *| 𝑈𝑠* , and so it remains to choose 𝑠*0 ∈ |𝐹 *|, such that

𝑧 ∈ 𝑈𝑠*0
and 𝜌𝑧𝑈𝑠(𝑓𝑠) = 𝜌𝑧𝑈𝑠′

(𝑓 ′𝑠′) (𝑠* → 𝑠, 𝑠* → 𝑠′) .

Thus 𝑧 ∈ 𝑈𝜌𝑥 . Furthermore, let us put 𝑥(𝑧) = 𝜌𝜉𝑥(𝑧)|𝐴, so that 𝑥(𝑧) is a section of 𝒮 on
𝐴, 𝑥(𝑧) ∈ Γ(𝐴,𝒮). In this way we have constructed a morphism ℋ : 𝑋 → Γ(𝐴,𝒮). Given
𝑓𝐴 = ℋ(𝑥), 𝑓𝐴 = ℋ(𝑦), let us prove that 𝑥 = 𝑦. In fact, at each point 𝑧 ∈ 𝐴 there exists
an open ball 𝐵(𝑧, 𝜖) of the local homeomorphism 𝜋 : 𝒮 → 𝒟 at the point 𝑓𝐴(𝑧). Let us
put 𝑈 =

⋃︀
𝑧∈𝐴𝐵(𝑧, 𝜖/2) and determine the section 𝑓𝑧 ∈ Γ(𝐵(𝑧, 𝜖/2),𝒮) passing through the

point 𝑠 = 𝑓𝐴(𝑧) ∈ 𝒮 such that
𝑓𝑧|𝐴 = 𝑓𝐴|𝐵(𝑧,𝜖/2)

(we note that 𝜖 = 𝜖(𝑧)). Let

𝐵𝑖𝑗 = 𝐵(𝑧𝑖, 𝜖𝑖/2) ∩𝐵(𝑧𝑗, 𝜖𝑗/2) , 𝐵𝑖𝑗 ∩ 𝐴 ̸= ∅ , 𝑧0 ∈ 𝐵𝑖𝑗 ∩ 𝐴

for some 𝑧𝑖, 𝑧𝑗 ∈ 𝐴. Then 𝑓𝑧𝑖(𝑧0) = 𝑓𝑧𝑗(𝑧0), and, consequently, there is an open ball 𝐵0 ⊂
𝐵(𝑧0, 𝜖0/2) of the local homeomorphism at the point 𝑠0 = 𝑓𝑧𝑖(𝑧0) such that 𝐵0 ⊂ 𝐵𝑖𝑗 and
𝑓𝑧𝑖 |𝐵0 = 𝑓𝑧𝑗 |𝐵0 . However, because of the isomorphism Γ(𝐵𝑖𝑗,𝒮) → 𝒮𝐵𝑖𝑗

the holomorphic
functions 𝑓𝑧𝑖 and 𝑓𝑧𝑗 coincide on the connected open set 𝐵𝑖𝑗 [1, Theorem A6]. The last
observation means that 𝑓𝑧𝑖 |𝐵𝑖𝑗

= 𝑓𝑧𝑗 |𝐵𝑖𝑗
. Now suppose that

𝐵𝑖𝑗 ∩ 𝐴 = ∅ , but 𝐵′𝑖𝑗(𝜖𝑖, 𝜖𝑗) ∩ 𝐴 ̸= ∅ , 𝑧′ ∈ 𝐵′𝑖𝑗 ∩ 𝐴 .

Clearly, we will obtain by similar reasoning 𝑓 ′𝑧𝑖 |𝐵′
𝑖𝑗

= 𝑓 ′𝑧𝑗 |𝐵′
𝑖𝑗
. But we have 𝑓 ′𝑧𝑖 |𝐵(𝑧𝑖,𝜖𝑖/2) = 𝑓𝑧𝑖

and 𝑓 ′𝑧𝑗 |𝐵(𝑧𝑗 ,𝜖𝑗/2) = 𝑓𝑧𝑗 , so that 𝑓𝑧𝑖|𝐵𝑖𝑗
= 𝑓𝑧𝑗 |𝐵𝑖𝑗

(in the case where 𝐵𝑖𝑗 ̸= ∅). Now there
remains the third possibility for 𝐵𝑖𝑗 ̸= ∅, namely when 𝐵′𝑖𝑗 ∩𝐴 = ∅. In this case the sections
𝑓𝑧𝑖 , 𝑓𝑧𝑗 on 𝐵𝑖𝑗 do not necessarily coincide, therefore let us put 𝑀 =

⋃︀
𝐵𝑖𝑗, where the bar

denotes closure in C𝑛 and the union is taken over all 𝐵𝑖𝑗 of this third type. It is clear that
𝑀 ∩𝐴 = ∅, since in the contrary case for 𝑧* ∈𝑀 ∩𝐴 there would exist 𝐵*𝑖𝑗 of the third type
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such that 𝑧* ∈ 𝐵*𝑖𝑗
′, which is impossible by construction. Let us put 𝑈(𝑓𝐴) = 𝑈∖𝑀 , so that

𝑈(𝑓𝐴) ⊃ 𝐴 and 𝑈(𝑓𝐴) is an open subset of C𝑛. Then there exists 𝑓 ∈ Γ(𝑈(𝑓𝐴),𝒮) such that
𝑓 |𝐴 = 𝑓𝐴 and, moreover,

𝑓 |𝑈(𝑓𝐴)∩𝐵(𝑧,𝜖/2) = 𝑓𝑧|𝑈(𝑓𝐴)∩𝐵(𝑧,𝜖/2) (𝑧 ∈ 𝐴) ;

also the section on 𝑈(𝑓𝐴) of 𝑓 with the property 𝑓 |𝐴 = 𝑓𝐴 is uniquely determined (nevertheless,
𝜑𝐴, the corresponding holomorphic function on 𝐴, is extended holomorphically to 𝑈(𝑓𝐴) in
a manner which, in general, is not unique).

Now if 𝜓(𝜉) = 𝑥, 𝜓(𝜂) = 𝑦, it follows from the fact that the family of open sets
{
⋃︀

𝑠∈|𝐹 | 𝑈𝑠}𝐹∈F is fundamental for 𝐴 that there exists 𝐹 * ∈ F such that 𝑈(𝑓𝐴) ⊃
⋃︀

𝐹 * 𝑈𝑠* ,
and moreover by construction

𝜌𝜉𝑥|⋃︀𝐹* 𝑈𝑠* = 𝜌𝜂𝑦|⋃︀𝐹* 𝑈𝑠* .

The last assertion means that 𝜉 ∼ 𝜂 and, consequently, 𝑥 = 𝑦. Moreover, the fact that
{
⋃︀

𝐹 𝑈𝑠}𝐹∈F is fundamental for 𝐴 and the constructions carried out above allow us to
conclude that ℋ : 𝑋 → Γ(𝐴,𝒮) is an isomorphism. The proposition is proved. �

The absence of sufficiency restrictions on |F| in Proposition 1 allows us to apply it to any
nonempty 𝐴 ⊂ C𝑛: it is enough to take F = |F| and 𝑈𝑠 (𝑠 ∈ F) a fundamental system of open
sets containing 𝐴 (in general, of uncountable cardinality). The investigation of topological
properties of𝐻-limits in this case produces substantial difficulties, therefore the investigation
of Γ(𝐴,𝒮) with no more than countable |F| is of interest. It is clear that, for example, any
closed bounded set 𝐴 ⊂ C𝑛 will be of this type, and the space of sections Γ(𝐴,𝒮) is the
inductive limit of the sequence of spaces Γ(𝑈𝑠,𝒮) (𝑠 ∈ |F|). Furthermore, the corresponding
Hausdorff spectrum {Γ(𝑈𝑠,𝒮), F, 𝜌𝑈𝑠′𝑈𝑠} will be true in this case. In general, the Hausdorff
spectrum 𝒳 (𝒮) will be true if all open sets 𝑈𝑠 (𝑠 ∈ |F|) are connected. We recall that each
space Γ(𝑈𝑠,𝒮) can be given the separated locally convex topology of uniform convergence
on the compact subsets of 𝑈𝑠 (𝑠 ∈ |F|), under which it is a Fréchet space; we will denote this
topology by 𝜏𝑠.

Proposition 2. Let 𝒳 (𝒮) = {Γ(𝑈𝑠,𝒮), F, 𝜌𝑈𝑠′𝑈𝑠} be a true countable Hausdorff spectrum
and suppose that 𝐴 =

⋂︀
F

⋃︀
𝐹 𝑈𝑠 has a countable fundamental system of compact sets, is

connected and
∘
�̸�= ∅. Then the 𝐻-limit 𝑋 =

←−
lim
−→
F

𝜌𝑈𝑠′𝑈𝑠Γ(𝑈𝑠,𝒮) is a separated 𝐻-space in the

topology 𝜏 * and is continuously embedded in 𝒪𝐴 (𝒪𝐴 is the algebra of holomorphic functions
on 𝐴).

Proof. First of all, by Proposition 1 we have the isomorphism ℋ : 𝑋 → Γ(𝐴,𝒮) ;

because of the connectedness of 𝐴 and the fact that
∘
�̸�= ∅ each holomorphic function on 𝐴,

𝜑 ∈ 𝒪𝐴, is generated by some holomorphic function on the open set 𝑈(𝜑) ; moreover, any
two holomorphic functions 𝜑1 ∈ 𝒪𝑈 and 𝜑2 ∈ 𝒪𝑉 (𝑈 ⊃ 𝐴, 𝑉 ⊃ 𝐴) which coincide on 𝐴
must coincide on a connected component of the intersection 𝑈 ∩ 𝑉 (see [1, p. 104]), which
also implies the isomorphism Γ(𝐴,𝒮) ≡ 𝒪𝐴. Since 𝐴 has a countable fundamental system of
compact subsets

𝐾𝑛 (𝑛 = 1, 2, . . . ) , 𝐾1 ⊂ 𝐾2 ⊂ . . . ,

on putting
||𝜑||𝑛 = max

𝑧∈𝐾𝑛

|𝜑(𝑧)| (𝜑 ∈ 𝒪𝐴) ,
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we obtain a seminorm on𝒪𝐴 (or on Γ(𝐴,𝒮), which is permissible according to the construction).
Furthermore, on putting

𝑝(𝜑) =
∞∑︁
𝑛=1

2−𝑛
||𝜑||𝑛

1 + ||𝜑||𝑛
(𝜑 ∈ 𝒪𝐴)

for example, we obtain a quasinorm on 𝒪𝐴 under which 𝒪𝐴 becomes a separated locally
convex space with a countable base of neighbourhoods of zero, therefore metrizable, but in
general not complete; we will denote this space by (𝒪𝐴, 𝑝).

We now show that on 𝒪𝐴 the locally convex topology 𝜏 * of the 𝐻-limit of the Hausdorff
spectrum 𝒳 (𝒮) is not weaker than 𝑝. In fact, let 𝑊 = {𝜑 ∈ 𝒪𝐴 : ||𝜑||𝑁 < 𝜖} be some
neighbourhood of zero in (𝒪𝐴, 𝑝) and let 𝐹 ∈ F. Let us choose 𝑠0 ∈ |𝐹 | such that 𝑈𝑠0 ⊃ 𝐾𝑁

– this choice turns out to be possible because of the compactness of 𝐾𝑁 and the condition
𝐴 ⊂

⋃︀
𝐹 𝑈𝑠 ; also we can find a compact set 𝐾0

𝑚 ⊂ 𝑈𝑠0 such that 𝐾
0
𝑚 ⊃ 𝐾𝑁 – here the choice

is possible because of the availability of a fundamental system {𝐾0
𝑛}∞𝑛=1 in 𝑈𝑠0 . Now it is

clear that
ℋ ∘ 𝜓(𝑀𝐹 ) ⊂ 𝑊 ,

where

𝜉 = (𝑓𝑠)𝐹 , 𝑀
𝐹 = {𝜉 ∈ 𝑉 𝑠0

𝐹 : sup
𝑧∈𝐾0

𝑚

|𝑓𝑠0(𝑧)| < 𝜖} , ℋ ∘ 𝜓(𝜉) = 𝜑 , 𝑓𝑠0|𝐴 = 𝜑 .

Since 𝜓(𝑀𝐹 ) is itself a neighbourhood of zero in the MVG 𝑋(𝐹 ) and 𝐹 ∈ F was chosen
arbitrarily, we have that

ℋ(co
⋃︁
F

𝜓(𝑀𝐹 )) ⊂ 𝑊

and is a neighbourhood of zero in the topology 𝜏 *. This also shows that 𝜏 * ≥ 𝑝. The
proposition is proved. �

The conditions of Proposition 2 are satisfied, for example, by 𝐴 = ∆(0, 𝑟), the compact
polydisk in C𝑛, or by any domain 𝒟 ⊂ C𝑛. It is not difficult to see that if 𝐴 is a connected
set and 𝐴 =

⋂︀
F

⋃︀
𝐹 𝑈𝑠, where F is an admissible class for Ω, then without loss of generality

we may assume that the 𝑈𝑠 (𝑠 ∈ |F|) are connected open sets in C𝑛. In fact, let each 𝑈𝑠 have
nonempty intersection with 𝐴, which is natural and can always be arranged by the method
of transformation of indices (𝑠 ∈ |F|). Let us denote by ̃︀𝑈𝑠 the open connected component
of 𝑈𝑠 which contains 𝑈𝑠 ∩ 𝐴 (𝑠 ∈ |F|). Now it is clear that 𝐴 =

⋂︀
F

⋃︀
𝐹
̃︀𝑈𝑠 for the admissible

class F in Ω and moreover, if {
⋃︀

𝐹 𝑈𝑠}F were a fundamental system of neighbourhoods for
𝐴, then {

⋃︀
𝐹
̃︀𝑈𝑠}F would be the same. Now let us consider the question: For what classes of

sets 𝐴 ⊂ C𝑛 do we have a representation

𝐴 =
⋂︁
𝐹∈F

⋃︁
𝑠∈𝐹

𝑈𝑠 ,

where F is an admissible class for Ω (a countable set)?
Let 𝐴 be any nonempty bounded connected subset of C𝑛 and 𝐵 = 𝐵(𝑧0, 𝑟) an open ball

such that 𝐴 ⊂ 𝐵. By Proposition 3.2 for the 𝑠-set 𝐵∖𝐴 we have the representation

𝐵∖𝐴 =
⋃︁
̂︀𝐵∈𝒦

⋂︁
𝑡∈ ̂︀𝐵

𝐿𝑡 ,
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where the 𝐿𝑡 are open subsets of 𝐵(𝑧0, 𝑟) (𝑡 ∈ |𝒦|, |𝒦| a countable set) and 𝒦 is some family
of subsets ̂︀𝐵 ⊂ Ω ; moreover, for each ̂︀𝐵 ∈ 𝒦 the intersections {

⋂︀ ̂︀𝐵 𝐿𝑡}𝒦 form a fundamental
system of compact subsets of 𝐵∖𝐴. Since C𝑛 is a finite-dimensional space, by Proposition
3.10 we will obtain the representation

𝐵∖𝐴 =
⋃︁
̂︀𝐵∈𝒦

⋂︁
𝑡∈ ̂︀𝐵

𝐿𝑡 ,

where the 𝐿𝑡 ⊂ 𝐵(𝑧0, 𝑟 + 𝜖) are compact sets (𝑡 ∈ |𝒦|). Now

𝐴 = 𝐵∖
⋃︁
𝒦

⋂︁
̂︀𝐵
𝐿𝑡 =

⋂︁
𝒦

(𝐵∖
⋂︁
̂︀𝐵
𝐿𝑡) =

⋂︁
𝒦

⋃︁
̂︀𝐵

(𝐵∖𝐿𝑡) ,

and 𝐺𝑡 = 𝐵∖𝐿𝑡 is an open set in C𝑛 (𝑡 ∈ |𝒦|). We will show that {
⋃︀ ̂︀𝐵 ̃︀𝐺𝑡}𝒦 form a

fundamental system of open connected neighbourhoods of 𝐴. In fact, if 𝑊 ⊃ 𝐴, 𝑊 ⊂ 𝐵 is
an open set, then without loss of generality we may assume that 𝑊 ⊂ 𝐵(𝑧0, 𝑟− 𝛿) for some
𝛿 > 0, so that 𝑃 = (𝐵(𝑧0, 𝑟 − 𝛿) ∪ 𝜕𝐵)∖𝑊 is a compact subset of 𝐵(𝑧0, 𝑟). Therefore there
exists a compact subset

⋂︀ ̂︀𝐵0
𝐿𝑡 =

⋂︀ ̂︀𝐵0
𝐿𝑡 such that 𝑃 ⊂

⋂︀ ̂︀𝐵0
𝐿𝑡 and, consequently,

𝐵∖𝑃 ⊃
⋃︁
̂︀𝐵0

(𝐵∖𝐿𝑡) or 𝑊 ∪ {𝑧 : 𝑟 − 𝛿 < |𝑧 − 𝑧0| < 𝑟} ⊃
⋃︁
̂︀𝐵0

𝐺𝑡 ⊃
⋃︁
̂︀𝐵0

̃︀𝐺𝑡 .

However, because of the connectedness of ̃︀𝐺𝑡 and the ordering of ̂︀𝐵0 ∈ 𝒦 we obtain the
inclusion 𝑊 ⊃

⋃︀ ̂︀𝐵0

̃︀𝐺𝑡, which was to be established.
Thus we obtain the following

Proposition 3. Every connected bounded subset 𝐴 ⊂ C𝑛 has a representation

𝐴 =
⋂︁
𝐹∈F

⋃︁
𝑠∈𝐹

𝑈𝑠 , (6)

where F is an admissible class for the countable set Ω and the 𝑈𝑠 are connected open subsets
(domains) in C𝑛.

In particular, for such a set 𝐴 the Hausdorff spectrum

𝒳 (𝒮) = {Γ(𝑈𝑠,𝒮), F, 𝜌𝑈𝑠′𝑈𝑠}

is true (it suffices to apply the uniqueness theorem for holomorphic functions). In the
representation (6) it is natural to require that if 𝑈𝑠 ∩ 𝑈𝑠′ ̸= ∅ (𝑠, 𝑠′ ∈ |F|) then it is a
connected set. Only such sets 𝐴 will be considered further.

In what follows the space 𝒪𝐴 of germs of holomorphic functions on 𝐴 will be provided
with the topology 𝑝 (in general not separated) of uniform convergence on the compact subsets
of 𝐴 and with the locally convex topology of the 𝐻-limit. As has already been noted above
(Proposition 1), for a connected bounded subset 𝐴 ⊂ C𝑛 we have the linear isomorphism

𝑋 ≡ Γ(𝐴,𝒮) ≡ 𝒪𝐴 .

We also note that if the set 𝐴 has an interior point then 𝒪𝐴 coincides with the space of
holomorphic functions on 𝐴 (up to isomorphism).
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Weierstrass’s Global Division Theorem

Weierstrass’s preparation theorem and the division theorem for germs of holomorphic
functions at a point 𝑤 ∈ C𝑛 allow us to establish a series of properties of local rings 𝑛𝒪𝑤 and
modules over these rings (Noetherian, Oka’s Lemma on the exactness of homomorphisms
of 𝑛𝒪-modules, etc. [1]). The proofs have a number of algebraic characteristics, therefore
consideration of a global variant of the theorems is significantly different and uses topological
results of linear analysis (see, for example, [1]). A more careful analysis makes it possible
to formulate a global division theorem in terms of the existence and continuity of a linear
operator acting on locally convex spaces so that the local and global variants of Weierstrass’s
theorem turn out to be in fact special cases of a more general theorem. In this section we
obtain a stronger form of Theorems II.B.3 and II.D.1 in [1] for the case of 𝐻-spaces. C𝑛−1

𝑚

denotes C× · · · × C⏟  ⏞  
𝑚−1

×C× · · · × C⏟  ⏞  
𝑛−𝑚

and 𝜋𝑚 : C𝑛 → C𝑛−1
𝑚 is the projection of C𝑛 onto C𝑛−1

𝑚 ;

at the same time 𝜋𝑚 : C𝑛 → C𝑚 and C𝑛 = C𝑛−1
𝑚 × C𝑚 so that 𝜋𝑚 is the projection of C𝑛

onto C𝑚. For notational convenience in what follows the germ of a holomorphic function is
denoted by capital Roman letters 𝐹 , 𝐺, 𝐻, . . . .

We will say that the germ 𝐻 ∈ 𝒪𝐴 (𝐴 ⊂ C𝑛) is a 𝑤-local Weierstrass polynomial in 𝑧𝑚
(1 ≤ 𝑚 ≤ 𝑛) of degree 𝑘 (𝑘 > 0) if there exists 𝑤 ∈ 𝐴 and a function ℎ ∈ 𝐻 which is
holomorphic on an open neighbourhood 𝑈 ⊃ 𝐴 and has representation on 𝑈

ℎ(𝑧) = (𝑧𝑚 − 𝑤𝑚)𝑘 + 𝑎1(𝑧
′)(𝑧𝑚 − 𝑤𝑚)𝑘−1 + · · · + 𝑎𝑘(𝑧′) ,

𝑧′ = (𝑧1, 𝑧2, . . . , 𝑧𝑚−1, 𝑧𝑚+1, . . . , 𝑧𝑛) ,
(7)

where the 𝑎𝑗(𝑧′) are holomorphic functions on 𝜋𝑚(𝑈), 𝑎𝑗(𝑤′) = 0, and 𝑤 = 𝑤′ × 𝑤𝑚 (𝑗 =
1, 2, . . . , 𝑘). It is clear that the holomorphic function ℎ is regular of order 𝑘 in 𝑧𝑚 at the
point 𝑤 ∈ 𝐴.

Theorem 1. (Weierstrass’s global division theorem.) Let 𝐴 ⊂ C𝑛 be a nonempty connected
bounded set such that 𝜋𝑚(𝐴) is closed and let 𝐻 ∈ 𝒪𝐴 be a 𝑤-local Weierstrass polynomial
in 𝑧𝑚 of degree 𝑘 (𝑘 > 0) with representation ℎ𝑈 ∈ 𝐻 such that

{𝑧 ∈ 𝜋−1𝑚 ∘ 𝜋𝑚(𝐴) ∩ 𝑈 : ℎ𝑈(𝑧) = 0} ⊂ 𝐴 .

Then there exists a continuous linear operator 𝐿 : 𝒪𝐴 → 𝒪𝐴 ×𝒪𝐴 , where

𝐿(𝐹 ) = (𝐺,𝑃 ) , 𝐹 = 𝐺𝐻 + 𝑃 ,

𝑃 =
𝑘−1∑︁
𝑗=0

𝑃𝑗(𝑧
′)𝑧𝑗𝑚 , 𝑃𝑗 ∈ 𝒪𝐴 .

First of all we recall [1, Chapter 2, §5] that 𝒪𝐴 has the topology 𝑝 of uniform convergence
on the compact subsets, which in general is neither separated nor complete, and 𝒪𝐴 × 𝒪𝐴

has the usual product topology. In the course of the proof of Theorem 1 𝒪𝐴 will also be
given another stronger locally convex topology, again in general not separated, under which
it is an 𝐻-space. Therefore we first present a lemma for Theorem 1.

Lemma 1. Let 𝐴 : 𝑋 → 𝑌 be a closed linear operator, where 𝑋 is an 𝐻-space under
the locally convex topology 𝜏 * and (𝑌, 𝜎) is an 𝐻-space (in general 𝑋, 𝑌 are not separated
spaces). Then 𝐴 is continuous.
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Proof. Let 𝑀 , 𝑁 be the respective nonseparated parts of 𝑋, 𝑌 and 𝑋/𝑀 , 𝑌/𝑁 the
separated quotient spaces with quotient maps 𝜉 : 𝑋 → 𝑋/𝑀 and 𝜂 : 𝑌 → 𝑌/𝑁 . Then the
quotient topology 𝜉𝜏 * on 𝑋/𝑀 is in general weaker than the topology (𝜉𝜏 *)*, the limit of the
corresponding Hausdorff spectrum (see, for example, [4]); let 𝜂𝜎 be the quotient topology on
𝑌/𝑁 . Then the diagram

𝑋/𝑀
𝐴*

. . . . . . . . . .> 𝑌/𝑁⌃⎮⎮⎮𝜉 ⌃⎮⎮⎮𝜂

𝑋
𝐴

> 𝑌

(8)

is commutative and the induced mapping 𝐴* exists because of the closedness of the operator
𝐴. In fact, the closedness of 𝐴 implies that 𝑁 =

⋂︁
𝑈∈𝒰 ,𝑉 ∈𝒱

{𝑈+𝐴𝑉 }, where 𝒰 , 𝐴𝒱 are bases of

neighbourhoods of zero for the topologies 𝜎, 𝐴𝜏 * respectively. But 𝐴𝑀 ⊂ 𝐴𝑉 for any 𝑉 ∈ 𝒱
and 0 ∈ 𝑈 , therefore 𝐴𝑀 ⊂ 𝑈 + 𝐴𝑉 (∀ 𝑈, 𝑉 ) and, consequently, 𝐴𝑀 ⊂ 𝑁 . Moreover, the
induced mapping 𝐴* is clearly linear; we will show that 𝐴* is a closed operator. For this we
have to show that

0 =
⋂︁

𝑈∈𝒰 ,𝑉 ∈𝒱

{𝜂𝑈 + 𝐴*𝜉𝑉 } .

Since 𝜂𝐴 = 𝐴*𝜉, this is equivalent to the relation 0 =
⋂︀
𝒰 ,𝒱 𝜂{𝑈 +𝐴𝑉 } ; let us suppose that

𝑎 ∈
⋂︀
𝒰 ,𝒱 𝜂{𝑈 +𝐴𝑉 }. Then 𝜂−1𝑎∩ (𝑈 +𝐴𝑉 ) ̸= ∅ (∀ 𝑈, 𝑉 ). But 𝜂−1𝑎 = 𝑦+𝑁 and because of

the absolute convexity of 𝑈+𝐴𝑉 and Theorem 1.3 of [2] we obtain 𝜂−1𝑎 ⊂ 𝑈+𝐴𝑉 (∀ 𝑈, 𝑉 ).
This implies that 𝜂−1𝑎 ⊂ 𝑁 ; consequently 𝑎 = 0 and 𝐴* is a closed operator.

Thus by the Closed Graph Theorem for the 𝐻-space (𝑌/𝑁, 𝜂𝜎) and complete MVGs
the closed operator 𝐴* is continuous from (𝑋/𝑀, (𝜉𝜏 *)*) to (𝑌/𝑁, 𝜂𝜎). The existence of the
Hausdorff spectrum for (𝑌/𝑁, 𝜂𝜎) follows from Proposition 4.10 and [4].

Now we will establish the continuity of the operator 𝐴 : 𝑋 → 𝑌 . Let 𝑊 be a closed
absolutely convex neighbourhood of zero in 𝑌 and (𝑉 𝐹

𝑛 ) a base of absolutely convex
neighbourhoods of zero in the TVG 𝑋(𝐹 ) (𝐹 ∈ F), where

𝑋 =
⋃︁
𝐹∈F

⋂︁
𝑠∈𝐹

𝑋𝑠 .

If it is shown that 𝐴 : 𝑋(𝐹 ) → 𝑌 is continuous, then by the definition of the topology 𝜏 *

and the local convexity of (𝑌, 𝜎) this will imply that 𝐴 : 𝑋 → 𝑌 is continuous. Therefore let
𝐹 ∈ F be fixed. Then (𝜉𝑉 𝐹

𝑛 ) is a base of neighbourhoods of zero for the TVG (𝑋/𝑀)(𝐹 ) (see
Proposition 4.10) and 𝜂𝑊 is a neighbourhood of zero in (𝑌/𝑁, 𝜂𝜎). By the commutativity
of Diagram (8) 𝐴*𝜉𝑉 𝐹

𝑛 = 𝜂𝐴𝑉 𝐹
𝑛 (∀𝑛 ∈ N) and by the continuity of 𝐴* there exists 𝑁 ∈ N

such that 𝐴*𝜉𝑉 𝐹
𝑁

⊂ 𝜂𝑊 or 𝜂𝐴𝑉 𝐹
𝑁

⊂ 𝜂𝑊 . Hence, 𝐴𝑉 𝐹
𝑁

⊂ 𝑊 + 𝑁 , but since 𝑊 is a closed
set and 𝑁 ⊂ 𝑊 , then 𝑊 +𝑁 ⊂ 𝑊 and the continuity of 𝐴 : 𝑋(𝐹 ) → 𝑌 is established. This
means that 𝐴 : 𝑋 → 𝑌 is continuous and the lemma is proved.

Lemma 2. Let 𝐿 : (𝒪𝐴, 𝑝) → (𝒪𝐴, 𝑝) be a closed linear operator. Then 𝐿 : (𝒪𝐴, 𝑝
*) →

(𝒪𝐴, 𝑝
*) is continuous (𝐴 is a nonempty connected bounded subset of C𝑛).
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Proof. We recall that the locally convex topology 𝑝* of the 𝐻-limit of a Hausdorff
spectrum on the space of germs of holomorphic functions on 𝐴 is not weaker than the
locally convex topology 𝑝 of uniform convergence on the compact subsets of 𝐴. Therefore
the operator 𝐿 : (𝒪𝐴, 𝑝

*) → (𝒪𝐴, 𝑝
*) is closed. Moreover, by Proposition 3.10 the set 𝐴 has

a representation
𝐴 =

⋂︁
𝐹∈F

⋃︁
𝑠∈𝐹

𝑈𝑠 ,

where F is an admissible class for the countable set Ω and 𝑈𝑠 is a domain in C𝑛 ; moreover,
each 𝑈𝑠 (𝑠 ∈ |F|) has a countable fundamental system of compact subsets (𝐾𝑠

𝑛)∞𝑛=1 with
𝐾𝑠

1 ⊂ 𝐾𝑠
2 ⊂ . . . . We will show that each space (𝒪𝐴)(𝐹 ) (𝐹 ∈ F) is complete and so (𝒪𝐴, 𝑝

*)
is an 𝐻-space.

We recall that
𝑋 =

⋃︁
𝐹∈F

⋂︁
𝑠∈𝐹

𝜓(𝑉 𝑠
𝐹 )

and 𝜅 : 𝑋 → Γ(𝐴,𝒮) ≡ 𝒪𝐴 is an isomorphism. The TVG (𝒪𝐴)(𝐹 ) is an isomorphic image
of the restriction of the complete TVG of countable character 𝑆(𝐹 ) (notation of 3.2) to 𝑋.
Therefore it is enough to establish the closedness of 𝜅−1(𝒪𝐴)(𝐹 ) in 𝑆(𝐹 ) . The arguments are
carried out more easily for the germs of holomorphic functions on 𝐴.

Let 𝐹 ∈ F, 𝑈𝐹 ⊃ 𝐴, 𝑈𝐹 =
⋃︀

𝑠∈𝐹 𝑈𝑠 (𝐹 is no more than countable and is totally linearly
ordered for 𝑠). Further, let (𝐺𝑛) be a sequence of germs of holomorphic functions on 𝐴
which is fundamental in (𝒪𝐴)(𝐹 ) . Since (𝒪𝐴)(𝐹 ) is a quotient group (up to isomorphism)
of the complete MVG (

∏︀
𝐹 𝒪𝑈𝑠)(𝐹 ), where 𝒪𝑈𝑠 is the Fréchet space with the topology of

uniform convergence on the compact sets (𝐾𝑠
𝑛)∞1 , it follows from Proposition 4.10 that there

exists a subsequence 𝑔𝑛𝑘
∈
∏︀

𝐹 𝒪𝑈𝑠 (𝑘 = 1, 2, . . . ) such that 𝑔𝑛𝑘
converges in (

∏︀
𝐹 𝒪𝑈𝑠)(𝐹 )

to some element 𝑔 ∈
∏︀

𝐹 𝒪𝑈𝑠 and 𝜓𝑔𝑛𝑘
= 𝐺𝑛𝑘

(𝑘 = 1, 2, . . . ). The last condition implies in
particular that 𝑔𝑛𝑘

= (𝑓𝑛𝑘
𝑠 )𝑠∈𝐹 , where 𝑓𝑛𝑘

𝑝 |𝑈𝑠 = 𝑓𝑛𝑘
𝑠 (𝑠 ≤ 𝑝, 𝑝 ∈ 𝐹 ), 𝑝 = 𝑝(𝑘), (𝑘 = 1, 2, . . . ).

Put 𝑝0 = inf𝑘 𝑝(𝑘), 𝑝0 ∈ 𝐹 . Then, clearly, 𝑓𝑛𝑘
𝑝0
|𝑈𝑠 = 𝑓𝑛𝑘

𝑠 (𝑠 ≤ 𝑝0, 𝑘 = 1, 2, . . . ) ; we will
denote by 𝑓𝑘 = 𝑓𝑛𝑘

𝑝0
the holomorphic functions on the open connected set 𝑈𝑝0 (𝑘 = 1, 2, . . . ).

Since lim𝑘→∞ 𝑔𝑛𝑘
= 𝑔 and 𝑔 = (𝑔𝑠)𝑠∈𝐹 , then, in particular, 𝑓𝑘 converges to 𝑔𝑝0 in 𝒪𝑈𝑝0

and
moreover 𝑔 − 𝑔𝑛𝑘𝑙

∈ 𝑉 𝑠
𝐹 (𝑠 ∈ 𝐹, 𝑛𝑘𝑙 = 𝑛𝑘𝑙(𝑠), 𝑙 = 1, 2, . . . ). The last observation means

that for 𝑠 > 𝑝0 the holomorphic function 𝑔𝑝0 − 𝑓𝑛𝑘𝑙
has a unique extension to the set 𝑈𝑠

(𝑠 ∈ 𝐹 ). However, each element 𝑔𝑛𝑘
is equivalent to elements 𝑎𝑘 ∈

∏︀
𝐹𝑘

𝒪𝑈𝑠 , i.e. 𝜓𝑔𝑛𝑘
= 𝜓𝑎𝑘

and moreover 𝑎𝑘 ∈
⋂︀

𝑠∈𝐹𝑘
𝑉 𝑠
𝐹𝑘

(𝑘 = 1, 2, . . . ). Furthermore, we may assume without loss of
generality that 𝐹1 ≺ 𝐹2 ≺ . . . . Thus the holomorphic function 𝑓𝑛𝑘𝑙

has a unique extension
to the set 𝑈𝐹𝑘𝑙

⊃ 𝐴 (𝑙 = 1, 2, . . . ) and, consequently, the holomorphic function 𝑔𝑝0 has a
unique extension to the set 𝑈𝑠 ∩𝑈𝐹𝑘𝑙

(𝑠 > 𝑝0, 𝑠 ∈ 𝐹 ). Since 𝑈𝑠 ∩𝑈𝐹𝑘𝑙
=
⋃︀

𝑞∈𝐹𝑘𝑙
(𝑈𝑠 ∩𝑈𝑞) and

𝑈𝑠 ∩ 𝑈𝑞 ⊂ 𝑈𝑠 ∩ 𝑈𝑞′ (𝑞 ≤ 𝑞′), then 𝑈𝑠 ∩ 𝑈𝐹𝑘𝑙
is a connected open set (𝑙 = 1, 2, . . . , 𝑘𝑙 = 𝑘𝑙(𝑠)),

and since the set {𝑠 ∈ 𝐹 : 𝑠 > 𝑝0} can be enumerated, let its points be 𝑠1, 𝑠2, . . . .
Thus on each nonempty open connected set 𝑈𝑠 ∩ 𝑈𝐹𝑘𝑙

a holomorphic function 𝑔𝑝0𝑠 is
defined such that 𝑔𝑝0𝑠|𝑈𝑝0

= 𝑔𝑝0 (𝑠 > 𝑝0, 𝑠 ∈ 𝐹 ). But since each nonempty intersection
(𝑈𝑠𝑖 ∩𝑈𝐹𝑘𝑖

) ∩ (𝑈𝑠𝑗 ∩𝑈𝐹𝑘𝑗
) is connected by construction and has nonempty intersection with

𝑈𝑝0 , then a holomorphic function 𝑔 is defined on the open set
⋃︀∞

𝑖=1(𝑈𝑠𝑖 ∩ 𝑈𝐹𝑘𝑖
) such that

𝑔|𝑈𝑠𝑖∩𝑈𝐹𝑘𝑖
= 𝑔𝑝0𝑠𝑖 (𝑖 = 1, 2, . . . ). Then 𝑔|𝑈𝐹* generates an element of

⋂︀
𝑠∈𝐹 * 𝑉 𝑠

𝐹 * such that

𝜓𝑔 = 𝜓𝑔|𝑈𝐹
and, consequently, 𝜓𝑔 = 𝐺 ∈ 𝒪𝐴 and lim𝑛→∞𝐺𝑛 = 𝐺 in the TVG (𝒪𝐴)(𝐹 ) . Thus

the space (𝒪𝐴)(𝐹 ) is complete and (𝒪𝐴, 𝑝
*) is an 𝐻-space (𝑈𝐹 * ⊂

⋃︀∞
𝑖=1(𝑈𝑠𝑖 ∩𝑈𝐹𝑘𝑖

), 𝐹 * ∈ F).
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Continuity of the operator 𝐴 now follows from the Closed Graph Theorem, Lemma 1 and
the closedness of the operator 𝐴 : (𝒪𝐴, 𝑝

*) → (𝒪𝐴, 𝑝
*). The lemma is proved.

Proof of Theorem 1. Let 𝐻 ∈ 𝒪𝐴 be a 𝑤-local Weierstrass polynomial in 𝑧𝑚 of degree 𝑘
and let ℎ ∈ 𝐻 be a holomorphic function on the open connected set 𝑈 ⊃ 𝐴 which satisfies
the conditions of the theorem and the relation (7). Furthermore, let 𝐹 ∈ 𝒪𝐴 be an arbitrary
germ, let 𝑓 ∈ 𝐹 and suppose that 𝑓 is a holomorphic function on the domain 𝑉 ⊂ 𝑈1 (it
may be assumed without loss of generality that 𝑈1 ⊂ 𝑈). Let us fix a point 𝑎′ ∈ 𝜋𝑚(𝐴)
and a closed (according to the condition) cross-section 𝑟𝑎′(𝐴) ⊂ 𝑟𝑎′(𝑈) and choose a closed
piecewise-smooth Jordan contour Γ𝑎′ which encloses 𝑟𝑎′(𝐴) and lies in 𝑟𝑎′(𝑉 ) and has length
𝑙(Γ𝑎′). Since the function ℎ(𝑧) is continuous on the open neighbourhood of the compact set

𝑄 = {𝑧 ∈ 𝑉 : 𝑧𝑚 ∈ Γ𝑎′ , 𝜋𝑚(𝑧) = 𝑎′} ,

there exists an open ball 𝐵(0, 𝛿) such that for 𝑧𝑚 ∈ Γ𝑎′ and 𝑧′ ∈ 𝜋𝑚[(𝑎′, 𝑧𝑚) + 𝐵(0, 𝛿)] we
have the inequality

|ℎ(𝑧) − ℎ(𝑎′, 𝑧𝑚)| ≤ inf
𝑟𝑎′

|ℎ(𝑎′, 𝑧𝑚)| (9)

and the inclusion
(𝑎′, 𝑧𝑚) +𝐵(0, 𝛿) ⊂ 𝑉 (𝑧𝑚 ∈ Γ𝑎′) .

Moreover, by the compactness of 𝑄 we can choose a polydisk △′(0, 𝛿′𝑎′) ⊂ C𝑛−1 such that

[𝑎′ + △′(0, 𝛿′𝑎′)] × Γ𝑎′ ⊂
⋃︁

𝑧𝑚∈Γ𝑎′

[(𝑎′, 𝑧𝑚) +𝐵(0, 𝛿)] . (10)

In fact, we cover the compact set 𝑄 with the open balls (𝑎′, 𝑧𝑚) +𝐵(0, 𝛿) (𝑧𝑚 ∈ Γ𝑎′), in each
of which we choose a polydisk (𝑎′, 𝑧𝑚) +△(0, 𝛿𝑎′) (𝑧𝑚 ∈ Γ𝑎′ , 𝛿𝑎′ = (𝛿′𝑎′ , 𝛿𝑚)) with these taken
together also covering 𝑄. Put 𝑅𝑎′ = 𝑎′ + △′(0, 𝛿′𝑎′). Then⋃︁

𝑧𝑚∈Γ𝑎′

[(𝑎′, 𝑧𝑚) + △(0, 𝛿𝑎′)] =
[︀ ⋃︁

𝑟𝑎′

(𝑧𝑚 + △(0, 𝛿𝑚))
]︀
×𝑅𝑎′ ⊃ Γ𝑎′ ×𝑅𝑎′ ,

from which (10) follows.
The inclusion (10) allows us to conclude in particular that (9) and the inclusion Γ𝑎′ ⊂

𝑟𝑧′(𝑉 ) are valid for 𝑧′ ∈ 𝑅𝑎′ . Now for the indicated 𝑧′ ∈ 𝑅𝑎′ the function ℎ𝑧′ = ℎ(𝑧′, 𝑧𝑚)
as a holomorphic function of one variable 𝑧𝑚 has exactly 𝑘 zeros inside the contour Γ𝑎′ by
Rouché’s Theorem for the domain 𝑟𝑧′(𝑉 ) ∩ 𝑟𝑎′(𝑉 ) ; in particular, ℎ𝑧′ ̸= 0 on Γ𝑎′ and outside
this contour in the domain 𝑟𝑧′(𝑉 ) (and even 𝑟𝑧′(𝑈)).

We will denote by 𝒟𝑎′ the domain bounded by Γ𝑎′ and put

𝒟 =
⋃︁

𝑎′∈𝜋𝑚(𝐴)

(︀
𝒟𝑎′ ×𝑅𝑎′

)︀
.

It is clear that 𝒟 is an open connected set such that 𝐴 ⊂ 𝒟 ⊂ 𝑉 ⊂ 𝑈1 .
Further, for each open set 𝒟𝑎′ ×𝑅𝑎′ (𝑎′ ∈ 𝜋𝑚(𝐴)) we define a holomorphic function (see

[1])

𝑔𝑎′(𝑧) =
1

2𝜋𝑖

∫︁
Γ𝑎′

𝑓(𝑧′, 𝜁)

ℎ(𝑧′, 𝜁)
· 𝑑𝜁

𝜁 − 𝑧𝑚
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and a holomorphic function 𝑝𝑎′(𝑧) = 𝑓(𝑧) − 𝑔𝑎′(𝑧)ℎ(𝑧). Therefore

𝑝𝑎′(𝑧) =
1

2𝜋𝑖

∫︁
Γ𝑎′

𝑓(𝑧′, 𝜁)

ℎ(𝑧′, 𝜁)

[︂
ℎ(𝑧′, 𝜁) − ℎ(𝑧′, 𝑧𝑚)

𝜁 − 𝑧𝑚

]︂
𝑑𝜁

where

𝑝𝑎′(𝑧) =
𝑘−1∑︁
𝑗=0

𝑝𝑎′𝑗(𝑧
′)(𝑧𝑚 − 𝑤𝑚)𝑗 ,

𝑝𝑎′𝑗 =
1

2𝜋𝑖

∫︁
Γ𝑎′

ℎ*𝑗(𝑧
′, 𝜁)

ℎ(𝑧′, 𝜁)
𝑓(𝑧′, 𝜁) 𝑑𝜁 (𝑗 = 0, 1, . . . , 𝑘 − 1) ,

and the holomorphic functions ℎ*𝑗 (𝑗 = 0, 1, . . . , 𝑘− 1) are defined from (7) by consideration
of the expression

ℎ(𝑧′, 𝜁) − ℎ(𝑧′, 𝑧𝑚)

𝜁 − 𝑧𝑚
.

The uniqueness of the functions 𝑔𝑎′ and 𝑝𝑎′ is established similarly to [1, p. 93] by using
Rouché’s Theorem.

If
(︀
𝒟𝑎′ × 𝑅𝑎′

)︀
∩
(︀
𝒟𝑎′′ × 𝑅𝑎′′

)︀
̸= ∅, then for 𝑧 ∈

(︀
𝒟𝑎′ × 𝑅𝑎′

)︀
∩
(︀
𝒟𝑎′′ × 𝑅𝑎′′

)︀
we have

𝑧𝑚 ∈ 𝒟𝑎′ ∩ 𝒟𝑎′′ . Because the contours Γ𝑎′ and Γ𝑎′′ are homotopic this implies that the
following identity holds:∫︁

Γ𝑎′

𝑓(𝑧′, 𝜁)

ℎ(𝑧′, 𝜁)
· 𝑑𝜁

𝜁 − 𝑧𝑚
=

∫︁
Γ𝑎′′

𝑓(𝑧′, 𝜁)

ℎ(𝑧′, 𝜁)
· 𝑑𝜁

𝜁 − 𝑧𝑚
.

Thus 𝑔𝑎′(𝑧) = 𝑔𝑎′′(𝑧) and, consequently, a holomorphic function 𝑔(𝑧) can be defined on
the domain 𝒟 such that 𝑔|𝑅𝑎′×𝒟𝑎′

= 𝑔𝑎′ (𝑎′ ∈ 𝜋𝑚(𝐴)). In the same way a holomorphic
function 𝑝(𝑧) can be defined such that 𝑝|𝑅𝑎′×𝒟𝑎′

= 𝑝𝑎′ (𝑎′ ∈ 𝜋𝑚(𝐴)) and

𝑝(𝑧) =
𝑘−1∑︁
𝑗=0

𝑝𝑗(𝑧
′)(𝑧𝑚 − 𝑤𝑚)𝑗 ,

so that we have the unique representation

𝑓(𝑧) = 𝑔(𝑧)ℎ(𝑧) + 𝑝(𝑧) (𝑧 ∈ 𝒟) . (11)

Thus a linear operator 𝐿 : 𝒪𝐴 → 𝒪𝐴 × 𝒪𝐴 is defined by the relation 𝐿(𝐹 ) = (𝐺,𝑃 ),
𝐹 = 𝐺𝐻 + 𝑃 , 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐺, ℎ ∈ 𝐻, 𝑝 ∈ 𝑃 . The operator 𝐿 has components 𝐿1 : 𝐹 → 𝐺
and 𝐿2 : 𝐹 → 𝑃 , whose continuity in the respective topologies will also imply that of 𝐿. Let
us therefore investigate the continuity of the operators 𝐿1 and 𝐿2.

It follows clearly from the relation (11) that 𝐿1 and 𝐿2 are closed linear operators from
(𝒪𝐴, 𝑝) into (𝒪𝐴, 𝑝). Thus by Lemma 2 the operator 𝐿𝑖 : (𝒪𝐴, 𝑝

*) → (𝒪𝐴, 𝑝
*) is continuous

(𝑖 = 1, 2), as also is the operator

𝐿 : (𝒪𝐴, 𝑝
*) → (𝒪𝐴, 𝑝

*) × (𝒪𝐴, 𝑝
*) .

We now establish the continuity of the operator 𝐿 : (𝒪𝐴, 𝑝) → (𝒪𝐴, 𝑝)× (𝒪𝐴, 𝑝). First of
all, let us fix an open set 𝒟ℎ constructed be the method indicated above for the holomorphic
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function ℎ(𝑧) on the domain 𝑈1 ; then by the compactness of 𝐴 we choose a finite subcover⋃︀𝑁
𝑖=1

(︀
𝑅ℎ

𝑎′𝑖
×𝒟ℎ

𝑎′𝑖

)︀
, where by the construction it may be assumed without loss of generality that

on the distinguished boundary of the polydisk 𝑅ℎ
𝑎′𝑖
the function ℎ(𝑧′, 𝜁) = 0 only for 𝜁 ∈ 𝒟ℎ

𝑎′𝑖
(𝑖 = 1, 2, . . . , 𝑁). Therefore ℎ(𝑧) ̸= 0 on the distinguished boundary of the polydomain
𝑅ℎ

𝑎′𝑖
× 𝒟ℎ

𝑎𝑖
, which is part of the boundary of the domain

⋃︀𝑁
𝑖=1

(︀
𝑅ℎ

𝑎′𝑖
× 𝒟ℎ

𝑎′𝑖

)︀
= 𝑈2 . If we now

put

𝑀 = sup
0≤𝑗≤𝑘−1

sup⋃︀𝑁
𝑖=1

(︀
𝑅ℎ

𝑎′
𝑖
×Γ𝑎′

𝑖

)︀ ⃒⃒ℎ*𝑗(𝑧′, 𝜁)

ℎ(𝑧′, 𝜁)

⃒⃒
,

then 𝑀 < +∞.
Now let 𝐹 ∈ 𝒪𝐴, 𝐿1(𝐹 ) = 𝐺, 𝐿2(𝐹 ) = 𝑃 and choose 𝑓 ∈ 𝐹 with domain of definition

𝑉 ⊂ 𝑈2 ; construct the domain 𝒟𝑓 ⊂ 𝑉 such that 𝒟𝑓 ⊂ 𝑉 , while the functions 𝑝(𝑧) and 𝑔(𝑧)
are defined on 𝒟𝑓 (𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺) and the relation (11) holds. It is clear that 𝒟𝑓 ⊃ 𝐴 and
the following diagrams are commutative:

𝐹
𝐿2. . . . . . . . . .> 𝑃⌃⎮⎮⎮ ⌃⎮⎮⎮

𝑓 > 𝑝

,

𝐹
𝐿1. . . . . . . . . .> 𝐺⌃⎮⎮⎮ ⌃⎮⎮⎮

𝑓 > 𝑔

.

We will establish the continuity of the operator 𝐿2 : (𝒪𝐴, 𝑝) → (𝒪𝐴, 𝑝), the continuity of 𝐿1

being obvious. Let 𝑎′ ∈ 𝜋𝑚(𝐴). Then

|𝑝𝑎′(𝑧)| ≤ 𝐾
∑︀𝑘−1

𝑗=0 |𝑝𝑎′𝑗(𝑧
′)| ≤ 𝐾·𝑀

2𝜋

∑︀𝑘−1
𝑗=0

∫︀ 𝑙(Γ𝑓

𝑎′ )

0 |𝑓(𝑧′, 𝜁)| · |𝑑𝜁|
≤ 𝐾·𝑀

2𝜋
· 𝑘 · sup𝒟𝑓 |𝑓(𝑧′, 𝜁)| · 𝑙(Γ𝑓

𝑎′) .

Now we choose a sequence 𝑉1 = 𝑉 ⊃ 𝑉2 ⊃ . . . which is fundamental for 𝐴 and compact

sets 𝒟𝑚 = 𝒟𝑓
𝑚, where 𝒟𝑓

𝑚 ⊂ 𝑉𝑚 such that 𝐴 =
⋂︀∞

𝑚=1𝒟
𝑓
𝑚 and, moreover, the sequence

(𝒟𝑚) converges to 𝐴 in the Hausdorff metric for all compact subsets of C𝑛. This means in
particular that for 𝑓 ∈ 𝒪𝑉1 we have the relation

lim
𝑚→∞

sup
𝒟𝑚

|𝑓(𝑧)| ≤ sup
𝐴

|𝑓(𝑧)| .

In fact, let us assume the contrary, i.e. there exist 𝜖 > 0 and a sequence (𝑚𝑘) such that

sup
𝐴

|𝑓(𝑧)| + 𝜖 < sup
𝒟𝑚𝑘

|𝑓(𝑧)| (𝑘 ∈ N) .

From this we find a sequence (𝑧𝑚𝑘
) such that 𝑧𝑚𝑘

∈ 𝒟𝑚𝑘
and

sup
𝐴

|𝑓(𝑧)| + 𝜖 < |𝑓(𝑧𝑚𝑘
)| (𝑘 ∈ N) ;

but then we can find a subsequence (𝑧𝑚𝑘𝑙
) such that 𝑧* = lim

𝑙→∞
𝑧𝑚𝑘𝑙

. Then 𝑧* ∈ 𝐴 and,

consequently, we have the inequality

sup
𝐴

|𝑓(𝑧)| + 𝜖 ≤ |𝑓(𝑧*)| ,
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which is impossible.
Therefore

||𝑃 ||𝐴 = sup𝐴 |𝑝(𝑧)|
≤ lim𝑚→∞ sup𝒟𝑚

|𝑝(𝑧)| = lim𝑚→∞ sup𝒟𝑚
|𝑝𝑎′(𝑧)|

≤ 𝐾·𝑀 ·𝑘
2𝜋

lim𝑚→∞ 𝑙(Γ
𝑚
𝑎′) · lim𝑚→∞ sup𝒟𝑚

|𝑓(𝑧)|
≤ 𝐾𝐴 · 𝑙𝐴 · sup𝐴 |𝑓(𝑧)| = 𝐾𝐴 · 𝑙𝐴 · ||𝐹 ||𝐴 .

Thus the operator 𝐿2 : (𝒪𝐴, 𝑝) → (𝒪𝐴, 𝑝) is continuous. The theorem is proved. �
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Ю.В. Бондаренко

СИЛЬНОЕ УСЛОВИЕ ШОКЕ ДЛЯ КОНУСОВ В ПРОСТРАНСТВЕ
ФУНКЦИЙ

В настоящей статье приведены некоторые теоремы о представлении конусов в простран-
стве функций на (0;?). Эти конструкции навеяны, с одной стороны , классической теоремой
Каратеодори-Минковского о представлении элементов конуса через крайние точки , а с дру-
гой стороны, - конструкциями из работ, посвященных операторному представлению конусов
убывающих и вогнутых функций в весовом пространстве.

Ключевые слова: конус в пространстве функций, крайние лучи, весовые пространства, ко-
нуса убывающих и вогнутых функций.

Ju.V.Bondarenko

STRONG CONDITION SHOKE FOR CONES IN SPACE OF FUNCTIONS

Some theorems about representation of cones in function spaces on (0;?) are considered. We use
the classical Karatheodory – Minkowski theorem about representation of cone elements by extremal
points and operator representation of cones of monotone and concave functions in weight spaces.

Key words: cones in function spaces, extremal points, weight spaces, cones of monotone and
concave functions.
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