МАТЕМАТИКА

УДК

В.Н. Осташков

Аттрактор векторного поля с тремя неподвижными точками

В статье рассматриваются некоторые классы диссипативных систем типа систем Лоренца, связанных с задачей вращения вокруг неподвижных точек. Полученные с помощью численных методов решения иллюстрируются и анализируются методом компьютерного моделирования.

Ключевые слова: диссипативные системы, численные методы, компьютерное моделирование, странный аттрактор, фрактальные структуры.

В.Н. Осташков

Аттрактор векторного поля с тремя неподвижными точками

В статье рассматриваются некоторые классы диссипативных систем типа систем Лоренца, связанных с задачей вращения вокруг неподвижных точек. Полученные с помощью численных методов решения иллюстрируются и анализируются методом компьютерного моделирования.

Ключевые слова: диссипативные системы, численные методы, компьютерное моделирование, странный аттрактор, фрактальные структуры.

Задачи вращения твердого тела вокруг неподвижной точки в вязкой среде связаны с диссипативными системами, которые являются в общем случае неинтегрируемыми и остаются мало исследованными. В простейшем случае, когда вращение тела с простой геометрией происходит с малыми угловыми скоростями (исключаются вихри) при отсутствии внешних сил, динамика тела описывается уравнением [1]:

$$\dot{\mathbf{M}} = \mathbf{M} \times A\mathbf{M} + B\mathbf{M}$$
, (*) где \mathbf{M} — вектор кинетического момента в системе координат, связанной с телом, $A = I^{-1} = \mathrm{diag}(a_1, a_2, a_3)$, где I — тензор инерции, B — постоянная матрица. К системам типа (*) относится, например, система Лоренца [1]. Мы рассмотрим систему такого типа, обладающую рядом особенностей, не встречающихся в литературе.

1. Постановка задачи. Найдем векторное поле ${\bf F}$ в 3-мерном пространстве ${\bf R}^3$, определяемое уравнениями

$$\dot{x} = f_1(x, y, z),$$
 $\dot{y} = f_2(x, y, z),$
 $\dot{z} = f_3(x, y, z)$ (1)

и удовлетворяющее условиям:

- (2) $\text{div } \mathbf{F} < 0$
- (3) \mathbf{F} имеет 3 стационарные точки,
- (4) ${\bf F}$ имеет странный аттрактор c тремя полюсами.

удовлетворяет (при определенных значениях констант σ , r, b) условиям (2) и (3), однако (4) не выполняется, так как фазовые кривые векторного поля (5) притягиваются множеством, которое называется аттраектором Лоренца [1] и является двухполюсным. Последнее означает, что фазовая траектория системы (5) в зависимости от начальных условий с течением времени попеременно попадает в одну из двух конкурирующих зон, расположенных вблизи соответствующих

[©] Осташков В.Н., 2010

стационарных точек O_2 и O_3 , переходя бесконечно много раз из одной зоны в другую случайным образом. Стационарные точки являются нулями многочленов

$$Q_1 = rx - y + xz$$
, $Q_2 = -bz + xy$,
 $L = -x + y$.

Причем квадрики Q_1 и Q_2 пересекаются по кривой у с параметрическими уравнениями

$$x = t$$
, $y = \frac{brt}{b - t^2}$, $z = \frac{rt^2}{b - t^2}$. (6)

Из (6) следует, что с произвольной плоскостью Ax + By + Cz + D = 0 кривая γ пересекается в точках, отвечающих корням кубического уравнения

$$At(b-t^2) + Bbrt + Crt^2 + D(b-t^2) = 0$$
,

а с плоскостью L — в точках, определяемых уравнением $t^3-b(1-r)t=0$. Таким образом, система (5) порождается двумя квадриками Q_1 , Q_2 и плоскостью L .

3. Построение векторного поля. Прежде всего, в качестве квадрик возьмем пару квадрик: гиперболический параболоид $Q_1 = x - yz$ и гиперболический цилиндр $Q_2 = xz - 1$. Их пересечение — нормкривая c^3 степени 3 — определяется параметрическими уравнениями:

$$x = t, \ y = t^2, \ z = t^{-1}.$$
 (7)

В качестве третьей поверхности возьмем плоскость, проходящую через 3 заданные точки $M_i(t_i) \in c^3$, $i=1\dots 3$. Легко показать, что эта плоскость — множество нулей линейной функтими

$$L = \sigma_1 x - y + \sigma_3 z - \sigma_2$$
, (8) где $\sigma_1 = t_1 + t_2 + t_3$, $\sigma_2 = t_2 t_3 + t_3 t_1 + t_1 t_2$, $\sigma_3 = t_1 t_2 t_3$ (9)

— симметрические функции.

Теперь мы можем записать систему дифференциальных уравнений с тремя стационарными точками $M_i(t_i)$, $i=1\dots 3$:

$$\dot{x} = p(x - yz),$$
 $\dot{y} = q(xz - 1),$ (10)
 $\dot{z} = r(\sigma_1 x - y + \sigma_3 z - \sigma_2),$
где p, q, r положительные постоянные.
Дивергенция

$$\operatorname{div} \mathbf{F} = \frac{\partial \dot{x}}{\partial x} + \frac{\partial \dot{y}}{\partial y} + \frac{\partial \dot{z}}{\partial z} = p + r\sigma_3$$

системы (9) будет отрицательной, а сама система — диссипативной, если $\sigma_3 < -\frac{p}{r}$. Это возможно в случае, когда среди чисел t_1 , t_2 , t_3 имеется нечетное количество отрицательных.

4. Линеаризация. Чтобы выявить вид неустойчивости стационарных точек \boldsymbol{M}_i , найдем

матрицу
$$\mathbf{A} = \left(\frac{\partial(\dot{x},\,\dot{y},\,\dot{z})}{\partial(x,\,y,\,z)}\right)$$
:

$$\mathbf{A} = \begin{pmatrix} p & -z & -y \\ qz & 0 & qx \\ r\sigma_1 & -1 & \sigma_3 \end{pmatrix}. \tag{11}$$

Для того чтобы стационарная точка была устойчивой, необходимо, согласно теореме Ляпунова, чтобы корни λ_1 , λ_2 , λ_3 характеристического уравнения $\det(A-\lambda E)=0$ удовлетворяли условиям $\operatorname{Re}\lambda_i<0$.

5. Пример. Рассмотрим конкретную систему, положив в (9) и (10) $t_1 = -1$, $t_2 = 0.7$, $t_3 = 5$, p = q = 1, r = 0.5. Тогда находим: $\sigma_1 = 4.7$, $\sigma_2 = -2.2$, $\sigma_3 = -3.5$ — значения симметрических функций; $\operatorname{div} \mathbf{F} = -3/4$ — дивергенция; $O_1 = (-1, 1, -1)$, $O_2 = (0.7, 0.49, 10/7)$, $O_3 = (5, 25, 0.2)$ — стационарные точки (7); $\lambda_1 = -1.764565$, $\lambda_{2,3} = 0.5072823 \pm b_1 i$ — характеристические корни в O_1 ; $\lambda_1 = -1.624794$, $\lambda_{2,3} = 0.437397 \pm b_2 i$ — характеристические корни в O_2 ; $\lambda_1 = 0.04329681$, $\lambda_{2,3} = -0.3966484 \pm b_3 i$ — характеристические корни в O_3 .

52

6. Инвариантные многообразия. Так как условия теоремы Ляпунова не выполняются, то все стационарные точки являются неустойчивыми. И хотя мы получили три стационарные точки одного типа — типа седло-фокус, — следует заметить, что поведения фазовых траекторий в линейных окрестностях у этих точек существенно различны: фазовые кривые в окрестности точек O_1, O_2 ведут себя подобно фазовым кривым системы Лоренца в окрестности аналогичных стационарных точек, а в окрестности O_3 принципиально иначе. Точнее говоря, одномерное инвариантное многообразие γ_i , $i \in \{1, 2\}$, в точке O_i является отталкивающим, а двумерное инвариантное многообразие B_i — притягивающим; в точке же O_3 , наоборот, одномерное инвариантное многообразие γ_3 — притягивающее, а двумерное инвариантное многообразие B_3 отталкивающее.

В отличие от системы Лоренца, в которой одна из трех стационарных точек внешне никак не сказывается на поведении фазовых кривых, в нашей системе все три стационарные точки конкурируют между собой за влияние на фазовые траектории.

7. Бассейны притяжения аттракторов. На рис. 1 показан аттрактор A системы (10) при указанных в п. 5 параметрах, полученный числено методом Эйлера (с шагом $h=10^{-4}$). Установлено также, что максимальный показатель Ляпунова положителен. Следовательно, движение по аттрактору A является хаотическим, а сам аттрактор является странным. Пересечение аттрактора A с плоскостью L, показанное на рис. 1 б, имеет фрактальную структуру.

Кроме A система (10) имеет аттрактор A_{∞} , совпадающий с бесконечно удаленной точкой оси Oy (в положительном направлении).

7.1. Граница раздела бассейнов притяжения. Обозначив бассейны притяжения аттракторов A и A_{∞} соответственно через B и B_{∞} , рассмотрим границу θ , разделяющую B и B_{∞} . Исследовать свойства границы θ аналитическими средствами не представляется возможным. Поэтому были применены численные методы и

установлены некоторые ее свойства, перечисленные ниже.

7.2. Аттрактор орбит на θ . Если стартовая точка находится на θ , то через бесконечный промежуток времени фазовая кривая т, выпущенная из этой точки, окажется в точке O_3 , которая, следовательно, является аттрактором. При реализации орбиты т на компьютере возникает существенная трудность, обусловленная дискретностью численных методов и положительным старшим показателем Ляпунова и приводящая к тому, что траектория т очень быстро «сваливается» с heta, устремляясь либо к A , либо к A_{∞} . Чтобы преодолеть эту трудность, можно обратить векторное поле ${f F}$ и, взяв стартовую точку x_0 в малой окрестности ω точки O_3 , построить фазовую кривую векторного поля $-\mathbf{F}$, выходящую из x_0 . Для этого достаточно изменить знак параметров p, q, r. В этом случае возникающие вычислительные погрешности приводят к тому, что экспериментальная орбита $\widetilde{\tau}$ постоянно совершает малые отклонения от истинной траектории τ , оказываясь то в области B, то в области B_{∞} , которые уже не конкурируют на захват фазовых траекторий, а действуют на отторжение «заблудшей» орбиты $\widetilde{\tau}$, стремясь вытолкнуть ее из себя и отправить в сторону конкурента. Результатом такого согласованного отторжения является орбита, близко прилегающая к θ и со временем уходящая в бесконечность в положительном или отрицательном направлении оси Oz, описывая вокруг последней гладкую сужающуюся спираль.

Взяв в ω достаточно большое число различных стартовых точек, мы получим модель многообразия θ . На рис. 2 показан результат такой процедуры, выполненной для 10^7 стартовых точек. Аттрактор A располагается внутри поверхности θ (рис. 3). На рис. 4 и 5 приведены сечения бассейна B вертикальной и горизонтальной плоскостями.

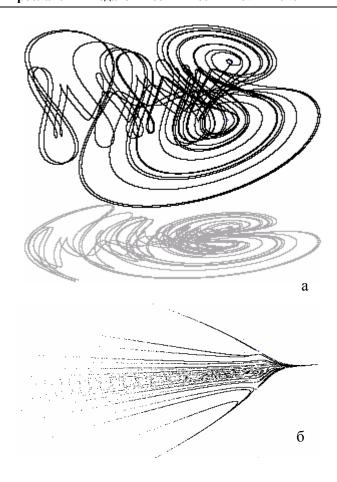


Рис. 1. Аттрактор с тремя полюсами (а) и его сечение (б) плоскостью L.

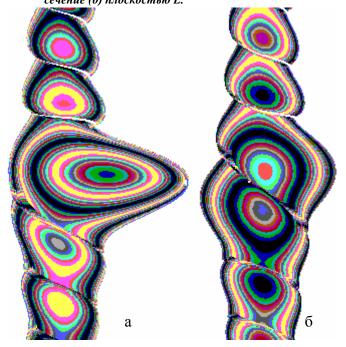


Рис.2. Рельеф границы θ раздела бассейнов притяжения: a — вид c востока, δ — вид c юга.

В.Н. Осташков

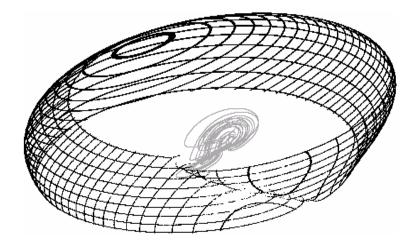


Рис. 3. Сечения поверхности θ плоскостями $z=c,\ c\in\{-4,-3,...,4\}$ и плоскостями y= const. На переднем плане — плохо прорисованный карман, устремленный к аттрактору A, который изображен в центре.

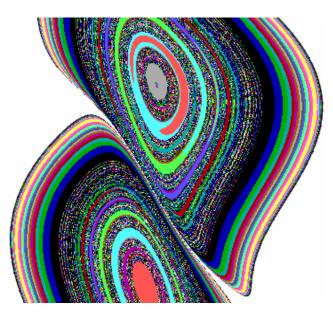


Рис. 4. Сечение бассейна B плоскостью y = -2.

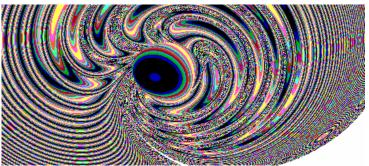


Рис. 5. Фрагмент сечения бассейна B плоскостью z=2. Цвет точки зависит от ее скорости приближения к аттрактору A.

Библиографический список

1. Борисов, А.В., Мамаев, И.С. Динамика твердого тела. [текст] — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001.— 384 с.

 56

 В.Н. Осташков