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E. 1. Smirnov

The Category of Hausdorff Spectra over a Semiabelian Category

In this article the category H of Hausdorff spectra is introduced into the discussion by means of
an appropriate factorization of the category of Hausdorff spectra Spect G over the category G. If G is a
semiabelian complete subcategory of the category T'G:, then H is a semiabelian category (in the sense of
V. P. Palamodov [1]).
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Let X = {X,3, hys} and Y = {Y,, 5, hy,} be Hausdorff spectra over some category G.
We will call any set of morphisms w,s : X; — Y, of the category G which satisfies the following
conditions a mapping of spectra wyy : X — )

(1) there exist mappings ¢ : § — §', ¢ : F' = F (VF €5),xT :T' - T (VT' € F'),
Y I = x"0, T} € T" such that (— denotes mapping of elements)

s € T € F € §

o Afle efle
p e 1 € 1 e jF
(2) for each pair (p, x(p)) a morphism wy, ) : Xy — Y, of the category G is defined

in such a way that if hy«, : Y, — Y-, Wpey(pr) @ Xy(pv) — Yy, then there exists a morphism
P )x(p) © Xxp) — Xx(p+) » and the following diagram is commutative:

hp*p
Y, - Y,
Wpx(p) Wp*x(p*) (®)
hx(p*)x(p)
Xx(p) . Xx(p*)

) i hypryxim) + Xxtw) = Xxr) > Woxtv) * Xnto) = Yp» W)+ Xxpr) — Ypr » then there
exists a morphism Ay, : Y, — Y}~ and the diagram (&) is commutative.

It follows from condition (3) and the definition of a Hausdorff spectrum that, for example,
every diagram

Y, - Yy
Yy < (@)
X x(p) = Ax(p)
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is commutative.

In particular, if |3| = |§'| = Z (Z is the set of whole numbers), § = {|3|}, & = {|3*|},
then we obtain a mapping of inverse spectra. Moreover, V. P. Palamodov’s version of mapping
of spectra [1] is a mapping of Hausdorff spectra. In fact, for each 3 € Z there exists the largest
a = af) € z such that (o, 5) € Ay, i.e. the inverse function of (/) from Condition II of
Definition 2 in [1] defines a set of morphisms u? : Xa(g) — Yp of the category K (3 € z) which
satisfies Condition I — this corresponds to fulfilling (1) and (2).

Suppose that wyy : X — Y and wzy : Y — Z are mappings of Hausdorff spectra so that
wyx = w(p,¢,X), wzy = w(¢, ¢, x'). Let us put 9" = @' 0 p, " = dpo ¢, x* = x o X/, s0
that o* : § = 3%, " F? > F(VF €3), x* : 1% > T (VT? € F?), setting w,s = Wy 0 Wy,
whenever morphisms w,,, and w,, are defined. It is easy to verify that the set of morphisms
wrs © Xs — Z, of the category G satisfies conditions (1) and (2) for a mapping of Hausdorff
spectra. We will call the mapping i : X — X, where X = { X, 3, hys}, the identity mapping if
it is formed by means of all the identity morphisms wy, : Xy — X, (s € |§|) of the category G ;
it is clear that ¢ is a left and right identity under composition.

Thus, the set of Hausdorff spectra over G and their mappings form a category, which (by
analogy with [1]) we will denote by Spect G. We may consider the category G as a subcategory in
Spect G — namely, to each object A € G we assign the Hausdorff spectrum A={A, {A},(}. Let
X ={Xs, 3, hys} € Spect G. Then every mapping wpy : X — B is given by a set of morphisms
wps 1 Xs — B, where ¢ : § — {B}, ¢p : {B} = F VF €3), xr : {B} — ¢r({B}) and
s = xr(or({B})) (F € §). Correspondingly, every mapping wx4 : A — X is given by a set of
morphisms w4 : A — X, where ¢’ : {A} = 5, ¢: F — {A} (F =¢'({4})), x : T — {A}
(VT e F),sel|F|, F=¢({A}).

Let X = {X,, 5 hyst, YV = {Y,, 5, hy,} be objects from Spect G. We will say that two
mappings of Hausdorff spectra wyy : & — Y and wy,y : X — Y are equivalent if for any F' € §
there exists F* € §' such that the diagram

is commutative for any p* € [F*| (s € |F|, p € |o(F)|, p' € |¢'(F)|). The relation introduced

is reflexive, i.e. in this case p,p’',p* € |F|, s = x(p), s = x(p'), s* = x(p*) and the following
diagram is commutative because of (P):

hs*s W
/
(.Up’s /

The Category of Hausdorff Spectra over a Semiabelian Category 19

/\




SpocnaBckuii negarornyeckuii BectTHUK — 2010 — Ne 4 — Towm III (EcTecTBeHHBIC HAyKH)

Specifically, the existence of a morphism A of the Hausdorff spectrum X follows from (P).

We now establish the transitivity of the relation. Let wyx ~ W), and wy, ~ wyy. Then
transitivity follows from the directedness of the class §' and the commutativity of the following
diagram (Vp € |F|):

o«
p*p
Yy > Yy
- / hpps
Wy hp*p’
ps
X - Y, Y
hp**p/
WP//S h hﬁ**
p**p”
Y /! > Y * %

Here, p € |(F)|, p' € | (F)|, p" € |¢"(F)|, p* € |F*|, p™* € |F*|and F* < F, F** < F. It
is clear that the equivalence relation is preserved under composition.

Thus the set Hom (X', )) is decomposed into equivalence classes; let us now consider a new
category H whose objects are the objects of the category Spect G, while the set Homy (X, )) is
formed by the equivalence classes of mappings wyy : X — ). We will denote these classes by

|lwyz|]-

Let G be a semiabelian complete subcategory of the category 7', in which it is possible to
construct direct sums and direct products. Then for each Hausdorff spectrum X = { X, §, hys}
over G there exists (as already shown) a unique (up to isomorphism) object of the category
g, called the H-limit of the Hausdorff spectrum X and denoted by lim hy,X,. Moreover, if

5
wyx : X — )V, then there exists a unique morphism

—

—
Wyx :lim hy Xy — lim hy,Y,
g st

of the category G. In fact, let x € lim hy, X, i.e. © € UFGS Nrer YV, where 1 : S — Sis

5
the canonical mapping and

Vg:{@deHXsixS:iLsgmé, 5,6€T}.
F

Then there exists F' € § such that x € ¥V (T € F), and, consequently, z = s, where
ar = (#1)p, ar € VE, T € F. Therefore by the definition of a mapping of Hausdorff spectra
there exist F' € §', F' = o(F), ¢ : F* — Fand x : T' — T (VT' € F') which allow us to
define a morphism of the category

grip - HXSHHE/;a
F F1

where gp1p = {Wpy(p) }per1| - For each T € F* we define an element 71 € VFTll C [ Y, such
that S = {wpx(p)xz(p) }pejp), where T = ¢(T"). Here, given hyp : Yy — Y, there exists by (®)

20 E. I Smirnov



SpocnaBckuii negarornyeckuii BectTHUK — 2010 — Ne 4 — Towm III (EcTecTBeHHBIC HAyKH)

~

P © Xx(p) — Xx(p) » and moreover hpﬁ(wﬁx(ﬁ)xg(ﬁ)) = pr(p)xi(p) , where p,p € T*. Now if
1’ is the canonical mapping for the Hausdorff spectrum ), then by (®) we obtain ¢’ Bri = ¢'Bp
for arbitrary 77,75 € F'. It remains to put y = ¢/ (T* € F'), where y € (Nugpm WV,

and, consequently, y € lin hypY, and wyyx = y. Additivity and continuity of wy are obvious
1
and come directly from the definition of the H-limit of a Hausdorff spectrum, therefore wyy is
a morphism of the category T'G. We will employ the notation H (wyx) = Wyyx
It is clear that H translates the identity mapping into the identity and a composition of
mappings into a composition. Therefore H is a covariant functor from the category Spect G into
the category G. Moreover, we have the following result:

Proposition 1. Let H : SpectG — G. Then H can be extended to the category H and is
additive on it.

Proof. We show first of all that Homy (X', ))) is an abelian group. Let wyy : X — ),
wyy 1 X — Y, where X, ) € Spect G, wyx = w(p, ¢, x), Wyy = W' (¢, ¢, x'). For each F € §
we can find F* € 3 such that o(F) < F* and ¢/(F) < F*. Let us construct mappings of
Hausdorff spectra @yj5, : X — Y so that wyy ~ @by and Wy ~ @2y, Up X' (0) = Up- X2(p).
In fact, for p € |F"'| there exists s, € | F| such that i, ()5, : X5, — Xyt » o o)sy * Xsp — Xa'(p)
and moreover, if p € T*, wpp- : F* — F, wppe : F* — F', then s, € T, where T' = ¢(T*),
T D Glwrp+(T)], T D ¢'[wpp«(T*)]. Putting X'(p) = s, and Y*(p) = s, in this case, we
obtain the necessary identity. Now if we put 3(F') = F*, then the mappings of Hausdorff spectra
Wy = w(B, 0, X"), W3y = w(P,¢,X?) are equivalent to wyy and wj,, respectively by (®).
Therefore we define ||wyx|| + [|wyy|| to be the element of Homy, (X', )) containing

{wpxr ) + wpiz(p)}PGIF*l (Fesg Im=p(F)).

Clearly, this class does not depend on the choice of representatives wy.y, Wy, in their equivalence
classes. The operation of addition which has been introduced converts Homs (X',)) into an
abelian group. Now the extension of the functor H to the category H and its additivity there are
obvious. The proposition is proved.

We will reserve the notation H = Haus for the case G = T'LC.
We introduce a semiabelian structure on the category H. For any objects X, Y, Z € H the
law of composition defines a bilinear mapping

Homy (X,Y) x Homy (Y, Z2) — Homy (X, Z) .

Thus H is an additive category.
Proposition 2. (See [1].) The category 'H is semiabelian.

Proof. Let ||wyy|| : X — ), where X', ) are Hausdorff spectra over G. We will construct for
a morphism ||wyy|| of the category H its kernel and cokernel. We choose in the class ||wyx|]|
some element wyy € Spect G so that wyy = w(p, ¢, x). Now for each s € |F|, where F' € §, let
us consider an object N, € G, N, C X, provided with the topology induced from X, and such
that Ny = kerw,, for s = x(p) (p € |¢(F)|)). By (®) the restriction nys of the morphism Ay
translates NV, into N, , therefore the family ' = {N,, &, ny,} is a Hausdorff subspectrum of the
Hausdorff spectrum X = { X, 3, hys}. We will show that the identity embedding ixy : N — X
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is the kernel of wyy . For this it is enough to establish that for any morphism myz : 2 — X of
the category Spect G such that wyy o myz =0,

ZeSpectG, Z={Z,3", hun}

there exists a morphism ny -z : Z — A of the category Spect G such that the following diagram
1s commutative:

N ‘
%‘
vz X Y (N)
e
Z

(Here the zero mapping of spectra signifies that for wyy = 0 = wyy o myz its component
morphisms w,; = wps © wy are such that wy,(Z;) = 0.)

At the same time it is clear that, if for W), ~ wyx, MYy z ~ myz such that W), omlyz =0,
where 0’ ~ 0, there also exist n)-; € Spect G and ¢’y \, ~ iy such that the diagram

N

-/
Lxn ,

is commutative, then ny,z ~ nyrz . Therefore, if diagram (N) applies, each morphism ||wyx|| of
the category H such that ||wyx||o||mxz|| = 0, where ||mxz|| : Z2 — X, and ixn € ||ixn]|, has
kernel ||ix|| such that there exists ||nyz|| with commutative diagram

N

[laal]

\ w
| el
fmaczl
Z

imaz|

Thus, for the existence of the kernel of the morphism ||wyx|| it is enough to establish the
existence of nyz : £ — N and the commutativity of diagram (N).

If the mapping of spectra is myz = m(¢°, ¢°, x°), then taking into account the fact that
Imwsey C Ny (s € |¢°(F°)], F° € §°) by assumption, we can construct a mapping of
Hausdorff spectra nyz : £ — N, where nyz = n(°, ¢°, x°), so that its constituent morphisms
Wsyo(s) : Lyo(s) — N, are restrictions of the morphisms w;, () . Commutativity of the diagram is
obvious.

Now we will construct the cokernel of the morphism ||wyy||; let wyy € ||wyx||. For each
p € |p(F)| (F € §) let us consider the factor group R, = Y,/Imw,,(, with the topology
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induced from Y,,. It is clear that because of () the subgroups Imwy,(,) form a Hausdorff
spectrum, therefore the factor groups R, (p € |¢(F')|) also form a Hausdorff spectrum; let

R = {va 3(1)7 hp’p} 5 yO - {}/;77 S(l)v hp’p} )

where §) = §'|o(3) (without loss of generality we may assume that ¢(§) = §'). Let us denote
by wry : Y — R the canonical mapping of Hausdorff spectra; we will show that ||wryl|
is the cokernal of the morphism ||wyx||. For this it follows that we have to establish that,
for any morphism mzy : Y — Z of the category Spect G such that mzy o wyy = 0, there
exists a morphism nzr : R — Z of the category Spect G such that the following diagram is
commutative:

X Lyx Yy nzr (K)
w\~
Xy R

If mzy = m(p, g/b\, X), then nzr = n(p, ngS, X), and since w.g(»)(Yy(z)) = 0 for all z € |G(F1)|
(F! € §), then Im Wy(2)x(x(z)) € Ng(z) > and, consequently, because the category G is semiabelian
there exists a morphism @Z;((z) : Ry(z) — Z; such that the following diagram is commutative:

Z,
S CLCT
x(z

Thus, as is not difficult to see, the set of morphisms W.¢(,) defines a mapping of Hausdorff
spectra in such a way that diagram (K) is commutative. The proposition is proved.
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