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E. I. Smirnov

The Category of Hausdorff Spectra over a Semiabelian Category

In this article the category H of Hausdorff spectra is introduced into the discussion by means of
an appropriate factorization of the category of Hausdorff spectra SpectG over the category G. If G is a
semiabelian complete subcategory of the category TG, then H is a semiabelian category (in the sense of
V. P. Palamodov [1]).
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Let X = {Xs, F, hs′s} and Y = {Yp, F
1, hp′p} be Hausdorff spectra over some category G.

We will call any set of morphisms ωps : Xs → Yp of the category G which satisfies the following
conditions a mapping of spectra ωYX : X → Y :

(1) there exist mappings ϕ : F → F1, φ : F 1 → F (∀F ∈ F), χT 1
: T 1 → T (∀T 1 ∈ F 1),

χT 1|T 1
0

= χT 1
0 , T 1

0 ⊂ T 1 such that ( 7→ denotes mapping of elements)

p ∈ T 1 ∈ F 1 ∈ F1

6 66 6

? ?

s ∈ ∈ ∈T F F

χ χ Φ Φ ϕ ϕ

(2) for each pair (p, χ(p)) a morphism ωpχ(p) : Xχ(p) → Yp of the category G is defined
in such a way that if hp∗p : Yp → Yp∗ , ωp∗χ(p∗) : Xχ(p∗) → Yp∗ , then there exists a morphism
hχ(p∗)χ(p) : Xχ(p) → Xχ(p∗) , and the following diagram is commutative:

Yp
- Yp∗

hp∗p

Xχ(p)
- Xχ(p∗)

hχ(p∗)χ(p)

66
ωpχ(p) ωp∗χ(p∗) (Φ)

(3) if hχ(p∗)χ(p) : Xχ(p) → Xχ(p∗) , ωpχ(p) : Xχ(p) → Yp , ωp∗χ(p∗) : Xχ(p∗) → Yp∗ , then there
exists a morphism hp∗p : Yp → Yp∗ and the diagram (Φ) is commutative.

It follows from condition (3) and the definition of a Hausdorff spectrum that, for example,
every diagram

Yp
- Yp∗

Xχ(p)
- Xχ(p′)

6

(Φ′)Yp′
�

�>

Z
Z}
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is commutative.
In particular, if |F| = |F1| = Z (Z is the set of whole numbers), F = {|F|}, F1 = {|F1|},

then we obtain a mapping of inverse spectra. Moreover, V. P. Palamodov’s version of mapping
of spectra [1] is a mapping of Hausdorff spectra. In fact, for each β ∈ Z there exists the largest
α = α(β) ∈ Z such that (α, β) ∈ ∆U , i.e. the inverse function of α(β) from Condition II of
Definition 2 in [1] defines a set of morphisms uβ

α : Xα(β) → Yβ of the category K (β ∈ Z) which
satisfies Condition I – this corresponds to fulfilling (1) and (2).

Suppose that ωYX : X → Y and ωZY : Y → Z are mappings of Hausdorff spectra so that
ωYX = ω(ϕ, φ, χ), ωZY = ω(ϕ′, φ′, χ′). Let us put ϕ∗ = ϕ′ ◦ ϕ, φ∗ = φ ◦ φ′, χ∗ = χ ◦ χ′, so
that ϕ∗ : F → F2, φ∗ : F 2 → F (∀F ∈ F), χ∗ : T 2 → T (∀T 2 ∈ F 2), setting ωrs = ωrp ◦ ωps

whenever morphisms ωps and ωrp are defined. It is easy to verify that the set of morphisms
ωrs : Xs → Zr of the category G satisfies conditions (1) and (2) for a mapping of Hausdorff
spectra. We will call the mapping i : X → X , where X = {Xs, F, hs′s}, the identity mapping if
it is formed by means of all the identity morphisms ωss : Xs → Xs (s ∈ |F|) of the category G ;
it is clear that i is a left and right identity under composition.

Thus, the set of Hausdorff spectra over G and their mappings form a category, which (by
analogy with [1]) we will denote by SpectG. We may consider the category G as a subcategory in
SpectG – namely, to each object A ∈ G we assign the Hausdorff spectrum A={A, {A}, ∅}. Let
X ={Xs, F, hs′s} ∈ SpectG. Then every mapping ωBX : X → B is given by a set of morphisms
ωBs : Xs → B, where ϕ : F → {B}, φF : {B} → F (∀F ∈ F), χF : {B} → φF ({B}) and
s = χF (φF ({B})) (F ∈ F). Correspondingly, every mapping ωXA : A→ X is given by a set of
morphisms ωsA : A → Xs, where ϕ′ : {A} → F, φ : F → {A} (F = ϕ′({A})), χ : T → {A}
(∀T ∈ F ), s ∈ |F |, F = ϕ′({A}).

Let X = {Xs, F, hs′s}, Y = {Yp, F
1, hp′p} be objects from SpectG. We will say that two

mappings of Hausdorff spectra ωYX : X → Y and ω′YX : X → Y are equivalent if for any F ∈ F

there exists F ∗ ∈ F1 such that the diagram

Yp′
���

���*
Yp∗

Yp

Xs
H

HHH
HHj

���
���* H

HHH
HHj

ωps

ω′p′s hp∗p′

hp∗p

is commutative for any p∗ ∈ |F ∗| (s ∈ |F |, p ∈ |ϕ(F )|, p′ ∈ |ϕ′(F )|). The relation introduced
is reflexive, i.e. in this case p, p′, p∗ ∈ |F |, s = χ(p), s = χ(p′), s∗ = χ(p∗) and the following
diagram is commutative because of (Φ):

Yp′

Yp∗

Xs∗

Xs

hs∗s

ω′p′s hp∗p′

ωp∗s∗

Yp
���������1

PPPPPPPPPq

PPPPPPPPPq

���������1
- -

ωps hp∗p
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Specifically, the existence of a morphism hs∗s of the Hausdorff spectrum X follows from (Φ).
We now establish the transitivity of the relation. Let ωYX ∼ ω′YX and ω′YX ∼ ω′′YX . Then

transitivity follows from the directedness of the class F1 and the commutativity of the following
diagram (∀ p ∈ |F |) :

Yp′′

Yp̄

Yp

Xs

ωps

ωp′′s hp̄∗∗

hp̄p∗

Yp′
���������1

PPPPPPPPPq

PPPPPPPPPq

���������1
-

ωp′s ���������1

PPPPPPPPPq

-
hp∗p

-
hp∗∗p′′

Yp∗

Yp∗∗

hp∗∗p′

hp∗p′

Here, p ∈ |ϕ(F )|, p′ ∈ |ϕ′(F )|, p′′ ∈ |ϕ′′(F )|, p∗ ∈ |F ∗|, p∗∗ ∈ |F ∗∗| and F ∗ ≺ F , F ∗∗ ≺ F . It
is clear that the equivalence relation is preserved under composition.

Thus the set Hom(X ,Y) is decomposed into equivalence classes; let us now consider a new
category H whose objects are the objects of the category SpectG, while the set HomH(X ,Y) is
formed by the equivalence classes of mappings ωYX : X → Y . We will denote these classes by
||ωYX || .

Let G be a semiabelian complete subcategory of the category TG, in which it is possible to
construct direct sums and direct products. Then for each Hausdorff spectrum X = {Xs, F, hs′s}
over G there exists (as already shown) a unique (up to isomorphism) object of the category

G, called the H-limit of the Hausdorff spectrum X and denoted by
←−
lim
−→

F

hs′sXs . Moreover, if

ωYX : X → Y , then there exists a unique morphism

ωYX :
←−
lim
−→

F

hs′sXs →
←−
lim
−→
F1

hp′pYp

of the category G. In fact, let x ∈
←−
lim
−→

F

hs′sXs , i.e. x ∈
⋃

F∈F

⋂
T∈F ψV

T
F , where ψ : Ŝ → S is

the canonical mapping and

V T
F = {α ∈

∏
F

Xs : xs = ĥsŝxŝ , s, ŝ ∈ T} .

Then there exists F ∈ F such that x ∈ ψV T
F (T ∈ F ), and, consequently, x = ψαT , where

αT = (xT
s )F , αT ∈ V T

F , T ∈ F . Therefore by the definition of a mapping of Hausdorff spectra
there exist F 1 ∈ F1, F 1 = ϕ(F ), φ : F 1 → F and χ : T 1 → T (∀T 1 ∈ F 1) which allow us to
define a morphism of the category

gF 1F :
∏
F

Xs →
∏
F 1

Yp ,

where gF 1F = {ωpχ(p)}p∈|F 1| . For each T 1 ∈ F 1 we define an element βT 1 ∈ V T 1

F 1 ⊂
∏

F 1 Yp such
that βT 1 = {ωpχ(p)x

T
χ(p)}p∈|F 1| , where T = φ(T 1). Here, given ĥpp̂ : Yp̂ → Yp , there exists by (Φ)

20 E. I. Smirnov



Ярославский педагогический вестник – 2010 – № 4 – Том III (Естественные науки)

ĥχ(p)χ(p̂) : Xχ(p̂) → Xχ(p) , and moreover ĥpp̂(ωp̂χ(p̂)x
T
χ(p̂)) = ωpχ(p)x

T
χ(p) , where p, p̂ ∈ T 1. Now if

ψ′ is the canonical mapping for the Hausdorff spectrum Y , then by (Φ) we obtain ψ′βT 1
1

= ψ′βT 1
2

for arbitrary T 1
1 , T

1
2 ∈ F 1. It remains to put y = ψ′βT 1 (T 1 ∈ F 1), where y ∈

⋂
T 1∈F 1 ψ′V T 1

F 1 ,

and, consequently, y ∈
←−
lim
−→
F1

hp′pYp and ωYXx = y. Additivity and continuity of ωYX are obvious

and come directly from the definition of the H-limit of a Hausdorff spectrum, therefore ωYX is
a morphism of the category TG. We will employ the notation H(ωYX ) = ωYX .

It is clear that H translates the identity mapping into the identity and a composition of
mappings into a composition. Therefore H is a covariant functor from the category SpectG into
the category G. Moreover, we have the following result:

Proposition 1. Let H : SpectG → G. Then H can be extended to the category H and is
additive on it.

Proof. We show first of all that HomH(X ,Y) is an abelian group. Let ωYX : X → Y ,
ω′YX : X → Y , where X ,Y ∈ SpectG, ωYX = ω(ϕ, φ, χ), ω′YX = ω′(ϕ′, φ′, χ′). For each F ∈ F

we can find F ∗ ∈ F1 such that ϕ(F ) ≺ F ∗ and ϕ′(F ) ≺ F ∗. Let us construct mappings of
Hausdorff spectra ω1,2

YX : X → Y so that ωYX ∼ ω1
YX and ω′YX ∼ ω2

YX ,
⋃

F ∗ χ1(p) =
⋃

F ∗ χ2(p).
In fact, for p ∈ |F 1| there exists sp ∈ |F | such that ĥχ(p)sp : Xsp → Xχ(p) , ĥχ′(p)sp : Xsp → Xχ′(p)

and moreover, if p ∈ T ∗, ωFF ∗ : F ∗ → F , ωF ′F ∗ : F ∗ → F ′, then sp ∈ T , where T = φ(T ∗),
T ⊃ φ[ωFF ∗(T ∗)], T ⊃ φ′[ωF ′F ∗(T ∗)]. Putting χ1(p) = sp and χ2(p) = sp in this case, we
obtain the necessary identity. Now if we put ϕ(F ) = F ∗, then the mappings of Hausdorff spectra
ω1
YX = ω(ϕ, φ, χ1), ω2

YX = ω(ϕ, φ, χ2) are equivalent to ωYX and ω′YX respectively by (Φ).
Therefore we define ||ωYX ||+ ||ω′YX || to be the element of HomH(X ,Y) containing

{ωpχ1(p) + ωpχ2(p)}p∈|F ∗| (F ∈ F, F ∗ = ϕ(F )) .

Clearly, this class does not depend on the choice of representatives ωYX , ω′YX in their equivalence
classes. The operation of addition which has been introduced converts HomH(X ,Y) into an
abelian group. Now the extension of the functor H to the category H and its additivity there are
obvious. The proposition is proved.

We will reserve the notation H = Haus for the case G = TLC.
We introduce a semiabelian structure on the category H. For any objects X ,Y ,Z ∈ H the

law of composition defines a bilinear mapping

HomH(X ,Y)× HomH(Y ,Z) → HomH(X ,Z) .

Thus H is an additive category.

Proposition 2. (See [1].) The category H is semiabelian.

Proof. Let ||ωYX || : X → Y , where X ,Y are Hausdorff spectra over G. We will construct for
a morphism ||ωYX || of the category H its kernel and cokernel. We choose in the class ||ωYX ||
some element ωYX ∈ SpectG so that ωYX = ω(ϕ, φ, χ). Now for each s ∈ |F |, where F ∈ F, let
us consider an object Ns ∈ G, Ns ⊂ Xs , provided with the topology induced from Xs , and such
that Ns = kerωps for s = χ(p) (p ∈ |ϕ(F )|)). By (Φ) the restriction ns′s of the morphism hs′s

translates Ns into Ns′ , therefore the family N = {Ns, F, ns′s} is a Hausdorff subspectrum of the
Hausdorff spectrum X = {Xs, F, hs′s}. We will show that the identity embedding iXN : N → X
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is the kernel of ωYX . For this it is enough to establish that for any morphism mXZ : Z → X of
the category SpectG such that ωYX ◦mXZ = 0,

Z ∈ SpectG , Z = {Zt, F
◦, ht′t}

there exists a morphism nNZ : Z → N of the category SpectG such that the following diagram
is commutative:

N

Z

6
nNZ (N)X

XXXXXXXXz

��������:

iXN

mXZ

- Y
ωYX

(Here the zero mapping of spectra signifies that for ωYX = 0 = ωYX ◦ mXZ its component
morphisms ωpt = ωps ◦ ωst are such that ωpt(Zt) = 0.)

At the same time it is clear that, if for ω′YX ∼ ωYX , m′XZ ∼ mXZ such that ω′YX ◦m′XZ = 0′,
where 0′ ∼ 0, there also exist n′NZ ∈ SpectG and i′XN ∼ iXN such that the diagram

N

Z

6

n′NZ X

XXXXXXXXz

��������:

i′XN

m′XZ

- Y
ω′YX

is commutative, then n′NZ ∼ nNZ . Therefore, if diagram (N) applies, each morphism ||ωYX || of
the category H such that ||ωYX || ◦ ||mXZ || = 0, where ||mXZ || : Z → X , and iXN ∈ ||iXN ||, has
kernel ||iXN || such that there exists ||nNZ || with commutative diagram

N

Z

6

||nNZ || X

XXXXXXXXz

��������:

||iXN ||

||mXZ ||

- Y
||ωYX ||

Thus, for the existence of the kernel of the morphism ||ωYX || it is enough to establish the
existence of nNZ : Z → N and the commutativity of diagram (N).

If the mapping of spectra is mXZ = m(ϕ◦, φ◦, χ◦), then taking into account the fact that
Imωsχ◦(s) ⊂ Ns (s ∈ |φ◦(F ◦)|, F ◦ ∈ F◦) by assumption, we can construct a mapping of
Hausdorff spectra nNZ : Z → N , where nNZ = n(ϕ◦, φ◦, χ◦), so that its constituent morphisms
ω̂sχ◦(s) : Zχ◦(s) → Ns are restrictions of the morphisms ωsχ◦(s) . Commutativity of the diagram is
obvious.

Now we will construct the cokernel of the morphism ||ωYX || ; let ωYX ∈ ||ωYX ||. For each
p ∈ |ϕ(F )| (F ∈ F) let us consider the factor group Rp = Yp/Imωpχ(p) with the topology
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induced from Yp . It is clear that because of (Φ) the subgroups Imωpχ(p) form a Hausdorff
spectrum, therefore the factor groups Rp (p ∈ |ϕ(F )|) also form a Hausdorff spectrum; let

R = {Rp, F
1
0, hp′p} , Y0 = {Yp, F

1
0, hp′p} ,

where F1
0 = F1|ϕ(F) (without loss of generality we may assume that ϕ(F) = F1). Let us denote

by ωRY : Y → R the canonical mapping of Hausdorff spectra; we will show that ||ωRY ||
is the cokernal of the morphism ||ωYX ||. For this it follows that we have to establish that,
for any morphism mZY : Y → Z of the category SpectG such that mZY ◦ ωYX = 0, there
exists a morphism nZR : R → Z of the category SpectG such that the following diagram is
commutative:

Z

R

6
nZR (K)X XXXXXXXXz

��������:

ωXY

mZY

- Y
ωYX

If mZY = m(ϕ̂, φ̂, χ̂), then nZR = n(ϕ̂, φ̂, χ̂), and since ωzχ̂(z)(Yχ̂(z)) = 0 for all z ∈ |ϕ̂(F 1)|
(F 1 ∈ F), then Imωχ̂(z)χ(χ̂(z)) ⊂ Nχ̂(z) , and, consequently, because the category G is semiabelian
there exists a morphism ω̂zχ̂(z) : Rχ̂(z) → Zt such that the following diagram is commutative:

Zz

Rχ̂(z)

6
ω̂zχ̂(z)XXXXXXXXz

��������:

ωχ̂(z)χ̂(z)

ωzχ̂(z)

Yχ̂(z)

Thus, as is not difficult to see, the set of morphisms ω̂zχ̂(z) defines a mapping of Hausdorff
spectra in such a way that diagram (K) is commutative. The proposition is proved.
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