УДК 512.7

E. I. Smirnov

The Category of Hausdorff Spectra over a Semiabelian Category

In this article the category \mathcal{H} of Hausdorff spectra is introduced into the discussion by means of an appropriate factorization of the category of Hausdorff spectra Spect \mathcal{G} over the category \mathcal{G} . If \mathcal{G} is a semiabelian complete subcategory of the category TG, then \mathcal{H} is a semiabelian category (in the sense of V. P. Palamodov [1]).

Key words: Hausdorff spectra, semiabelian category, commutative diagram.

Let $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\}$ and $\mathcal{Y} = \{Y_p, \mathfrak{F}^1, h_{p'p}\}$ be Hausdorff spectra over some category \mathcal{G} . We will call any set of morphisms $\omega_{ps} : X_s \to Y_p$ of the category \mathcal{G} which satisfies the following conditions a *mapping of spectra* $\omega_{\mathcal{YX}} : \mathcal{X} \to \mathcal{Y}$:

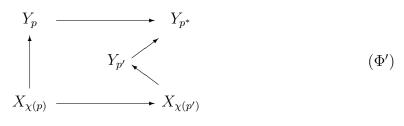
(1) there exist mappings $\varphi : \mathfrak{F} \to \mathfrak{F}^1$, $\phi : F^1 \to F \; (\forall F \in \mathfrak{F}), \; \chi^{T^1} : T^1 \to T \; (\forall T^1 \in F^1), \; \chi^{T^1}|_{T^1_0} = \chi^{T^1_0}, \; T^1_0 \subset T^1 \text{ such that } (\mapsto \text{ denotes mapping of elements})$

s	\in	T	\in	F	\in	F
χ		$\chi \Phi$		$\Phi {\begin{bmatrix} \varphi \\ \varphi $		φ
p	\in	T^1	\in	F^1	\in	\mathfrak{F}^1

(2) for each pair $(p, \chi(p))$ a morphism $\omega_{p\chi(p)} : X_{\chi(p)} \to Y_p$ of the category \mathcal{G} is defined in such a way that if $h_{p^*p} : Y_p \to Y_{p^*}, \, \omega_{p^*\chi(p^*)} : X_{\chi(p^*)} \to Y_{p^*}$, then there exists a morphism $h_{\chi(p^*)\chi(p)} : X_{\chi(p)} \to X_{\chi(p^*)}$, and the following diagram is commutative:

(3) if $h_{\chi(p^*)\chi(p)} : X_{\chi(p)} \to X_{\chi(p^*)}$, $\omega_{p\chi(p)} : X_{\chi(p)} \to Y_p$, $\omega_{p^*\chi(p^*)} : X_{\chi(p^*)} \to Y_{p^*}$, then there exists a morphism $h_{p^*p} : Y_p \to Y_{p^*}$ and the diagram (Φ) is commutative.

It follows from condition (3) and the definition of a Hausdorff spectrum that, for example, every diagram



[©] Smirnov E. I., 2010

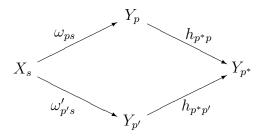
is commutative.

In particular, if $|\mathfrak{F}| = |\mathfrak{F}^1| = \mathbb{Z}$ (\mathbb{Z} is the set of whole numbers), $\mathfrak{F} = \{|\mathfrak{F}|\}, \mathfrak{F}^1 = \{|\mathfrak{F}^1|\},$ then we obtain a mapping of inverse spectra. Moreover, V. P. Palamodov's version of mapping of spectra [1] is a mapping of Hausdorff spectra. In fact, for each $\beta \in \mathbb{Z}$ there exists the largest $\alpha = \alpha(\beta) \in \mathbb{Z}$ such that $(\alpha, \beta) \in \Delta_U$, i.e. the inverse function of $\alpha(\beta)$ from Condition II of Definition 2 in [1] defines a set of morphisms $u_{\alpha}^{\beta} : X_{\alpha(\beta)} \to Y_{\beta}$ of the category $K \ (\beta \in \mathbb{Z})$ which satisfies Condition I – this corresponds to fulfilling (1) and (2).

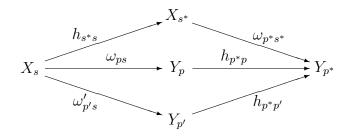
Suppose that $\omega_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$ and $\omega_{\mathcal{Z}\mathcal{Y}} : \mathcal{Y} \to \mathcal{Z}$ are mappings of Hausdorff spectra so that $\omega_{\mathcal{Y}\mathcal{X}} = \omega(\varphi, \phi, \chi), \ \omega_{\mathcal{Z}\mathcal{Y}} = \omega(\varphi', \phi', \chi')$. Let us put $\varphi^* = \varphi' \circ \varphi, \ \phi^* = \phi \circ \phi', \ \chi^* = \chi \circ \chi'$, so that $\varphi^* : \mathfrak{F} \to \mathfrak{F}^2, \ \phi^* : F^2 \to F \ (\forall F \in \mathfrak{F}), \ \chi^* : T^2 \to T \ (\forall T^2 \in F^2)$, setting $\omega_{rs} = \omega_{rp} \circ \omega_{ps}$ whenever morphisms ω_{ps} and ω_{rp} are defined. It is easy to verify that the set of morphisms $\omega_{rs} : X_s \to Z_r$ of the category \mathcal{G} satisfies conditions (1) and (2) for a mapping of Hausdorff spectra. We will call the mapping $i : \mathcal{X} \to \mathcal{X}$, where $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\}$, the *identity mapping* if it is formed by means of all the identity morphisms $\omega_{ss} : X_s \to X_s \ (s \in |\mathfrak{F}|)$ of the category \mathcal{G} ; it is clear that i is a left and right identity under composition.

Thus, the set of Hausdorff spectra over \mathcal{G} and their mappings form a category, which (by analogy with [1]) we will denote by Spect \mathcal{G} . We may consider the category \mathcal{G} as a subcategory in Spect \mathcal{G} – namely, to each object $A \in \mathcal{G}$ we assign the Hausdorff spectrum $\mathcal{A} = \{A, \{A\}, \emptyset\}$. Let $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\} \in \text{Spect } \mathcal{G}$. Then every mapping $\omega_{B\mathcal{X}} : \mathcal{X} \to B$ is given by a set of morphisms $\omega_{Bs} : X_s \to B$, where $\varphi : \mathfrak{F} \to \{B\}, \phi_F : \{B\} \to F \ (\forall F \in \mathfrak{F}), \chi_F : \{B\} \to \phi_F(\{B\}) \text{ and}$ $s = \chi_F(\phi_F(\{B\})) \ (F \in \mathfrak{F})$. Correspondingly, every mapping $\omega_{\mathcal{X}A} : A \to \mathcal{X}$ is given by a set of morphisms $\omega_{sA} : A \to X_s$, where $\varphi' : \{A\} \to \mathfrak{F}, \phi : F \to \{A\} \ (F = \varphi'(\{A\})), \chi : T \to \{A\}$ $(\forall T \in F), s \in |F|, F = \varphi'(\{A\}).$

Let $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\}, \mathcal{Y} = \{Y_p, \mathfrak{F}^1, h_{p'p}\}$ be objects from Spect \mathcal{G} . We will say that two mappings of Hausdorff spectra $\omega_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$ and $\omega'_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$ are *equivalent* if for any $F \in \mathfrak{F}$ there exists $F^* \in \mathfrak{F}^1$ such that the diagram



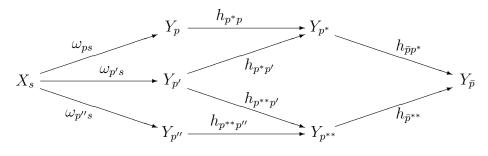
is commutative for any $p^* \in |F^*|$ $(s \in |F|, p \in |\varphi(F)|, p' \in |\varphi'(F)|)$. The relation introduced is reflexive, i.e. in this case $p, p', p^* \in |F|, s = \chi(p), s = \chi(p'), s^* = \chi(p^*)$ and the following diagram is commutative because of (Φ) :



The Category of Hausdorff Spectra over a Semiabelian Category

Specifically, the existence of a morphism h_{s^*s} of the Hausdorff spectrum \mathcal{X} follows from (Φ) .

We now establish the transitivity of the relation. Let $\omega_{\mathcal{YX}} \sim \omega'_{\mathcal{YX}}$ and $\omega'_{\mathcal{YX}} \sim \omega''_{\mathcal{YX}}$. Then transitivity follows from the directedness of the class \mathfrak{F}^1 and the commutativity of the following diagram $(\forall \overline{p} \in |\overline{F}|)$:



Here, $p \in |\varphi(F)|$, $p' \in |\varphi'(F)|$, $p'' \in |\varphi''(F)|$, $p^* \in |F^*|$, $p^{**} \in |F^{**}|$ and $F^* \prec \overline{F}$, $F^{**} \prec \overline{F}$. It is clear that the equivalence relation is preserved under composition.

Thus the set $\operatorname{Hom}(\mathcal{X}, \mathcal{Y})$ is decomposed into equivalence classes; let us now consider a new category \mathcal{H} whose objects are the objects of the category $\operatorname{Spect} \mathcal{G}$, while the set $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X}, \mathcal{Y})$ is formed by the equivalence classes of mappings $\omega_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$. We will denote these classes by $||\omega_{\mathcal{V}\mathcal{X}}||$.

Let \mathcal{G} be a semiabelian complete subcategory of the category TG, in which it is possible to construct direct sums and direct products. Then for each Hausdorff spectrum $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\}$ over \mathcal{G} there exists (as already shown) a unique (up to isomorphism) object of the category \mathcal{G} , called the *H*-limit of the Hausdorff spectrum \mathcal{X} and denoted by $\lim_{\mathfrak{F}} h_{s's}X_s$. Moreover, if

 $\omega_{\mathcal{YX}}: \mathcal{X} \to \mathcal{Y}$, then there exists a unique morphism

$$\overline{\omega}_{\mathcal{YX}}: \underset{\overrightarrow{\mathfrak{F}}}{\overset{\longleftarrow}{\underset{\mathfrak{F}}}} h_{s's}X_s \to \underset{\overrightarrow{\mathfrak{F}}^1}{\overset{\longleftarrow}{\underset{\mathfrak{F}}}} h_{p'p}Y_p$$

of the category \mathcal{G} . In fact, let $x \in \varprojlim_{\mathfrak{F} \in \mathfrak{F}} h_{s's}X_s$, i.e. $x \in \bigcup_{F \in \mathfrak{F}} \psi V_F^T$, where $\psi : \widehat{S} \to S$ is the canonical mapping and

$$V_F^T = \{ \alpha \in \prod_F X_s : x_s = \hat{h}_{s\hat{s}} x_{\hat{s}} , \ s, \hat{s} \in T \}.$$

Then there exists $F \in \mathfrak{F}$ such that $x \in \psi V_F^T$ $(T \in F)$, and, consequently, $x = \psi \alpha_T$, where $\alpha_T = (x_s^T)_F$, $\alpha_T \in V_F^T$, $T \in F$. Therefore by the definition of a mapping of Hausdorff spectra there exist $F^1 \in \mathfrak{F}^1$, $F^1 = \varphi(F)$, $\phi : F^1 \to F$ and $\chi : T^1 \to T$ $(\forall T^1 \in F^1)$ which allow us to define a morphism of the category

$$g_{F^1F}:\prod_F X_s \to \prod_{F^1} Y_p\,,$$

where $g_{F^1F} = \{\omega_{p\chi(p)}\}_{p\in|F^1|}$. For each $T^1 \in F^1$ we define an element $\beta_{T^1} \in V_{F^1}^{T^1} \subset \prod_{F^1} Y_p$ such that $\beta_{T^1} = \{\omega_{p\chi(p)} x_{\chi(p)}^T\}_{p\in|F^1|}$, where $T = \phi(T^1)$. Here, given $\hat{h}_{p\hat{p}} : Y_{\hat{p}} \to Y_p$, there exists by (Φ)

 $\hat{h}_{\chi(p)\chi(\hat{p})}: X_{\chi(\hat{p})} \to X_{\chi(p)}$, and moreover $\hat{h}_{p\hat{p}}(\omega_{\hat{p}\chi(\hat{p})}x_{\chi(\hat{p})}^T) = \omega_{p\chi(p)}x_{\chi(p)}^T$, where $p, \hat{p} \in T^1$. Now if ψ' is the canonical mapping for the Hausdorff spectrum \mathcal{Y} , then by (Φ) we obtain $\psi'\beta_{T_1^1} = \psi'\beta_{T_2^1}$ for arbitrary $T_1^1, T_2^1 \in F^1$. It remains to put $y = \psi'\beta_{T^1}$ $(T^1 \in F^1)$, where $y \in \bigcap_{T^1 \in F^1} \psi' V_{F^1}^{T^1}$, and, consequently, $y \in \varinjlim_{\hat{y}^1} h_{p'p}Y_p$ and $\overline{\omega}_{\mathcal{YX}}x = y$. Additivity and continuity of $\overline{\omega}_{\mathcal{YX}}$ are obvious and come directly from the definition of the *H*-limit of a Hausdorff spectrum, therefore $\overline{\omega}_{\mathcal{YX}}$ is

and come directly from the definition of the *H*-limit of a Hausdorff spectrum, therefore $\overline{\omega}_{\mathcal{YX}}$ is a morphism of the category *TG*. We will employ the notation $H(\omega_{\mathcal{YX}}) = \overline{\omega}_{\mathcal{YX}}$.

It is clear that H translates the identity mapping into the identity and a composition of mappings into a composition. Therefore H is a covariant functor from the category Spect \mathcal{G} into the category \mathcal{G} . Moreover, we have the following result:

Proposition 1. Let H: Spect $\mathcal{G} \to \mathcal{G}$. Then H can be extended to the category \mathcal{H} and is additive on it.

Proof. We show first of all that $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X}, \mathcal{Y})$ is an abelian group. Let $\omega_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$, $\omega'_{\mathcal{Y}\mathcal{X}} : \mathcal{X} \to \mathcal{Y}$, where $\mathcal{X}, \mathcal{Y} \in \operatorname{Spect} \mathcal{G}$, $\omega_{\mathcal{Y}\mathcal{X}} = \omega(\varphi, \phi, \chi)$, $\omega'_{\mathcal{Y}\mathcal{X}} = \omega'(\varphi', \phi', \chi')$. For each $F \in \mathfrak{F}$ we can find $F^* \in \mathfrak{F}^1$ such that $\varphi(F) \prec F^*$ and $\varphi'(F) \prec F^*$. Let us construct mappings of Hausdorff spectra $\overline{\omega}_{\mathcal{Y}\mathcal{X}}^{1,2} : \mathcal{X} \to \mathcal{Y}$ so that $\omega_{\mathcal{Y}\mathcal{X}} \sim \overline{\omega}_{\mathcal{Y}\mathcal{X}}^1$ and $\omega'_{\mathcal{Y}\mathcal{X}} \sim \overline{\omega}_{\mathcal{Y}\mathcal{X}}^2$, $\bigcup_{F^*} \overline{\chi}^1(p) = \bigcup_{F^*} \overline{\chi}^2(p)$. In fact, for $p \in |F^1|$ there exists $s_p \in |F|$ such that $\hat{h}_{\chi(p)s_p} : X_{s_p} \to X_{\chi(p)}$, $\hat{h}_{\chi'(p)s_p} : X_{s_p} \to X_{\chi'(p)}$ and moreover, if $p \in T^*$, $\omega_{FF^*} : F^* \to F$, $\omega_{F'F^*} : F^* \to F'$, then $s_p \in T$, where $T = \overline{\phi}(T^*)$, $T \supset \phi[\omega_{FF^*}(T^*)]$, $T \supset \phi'[\omega_{F'F^*}(T^*)]$. Putting $\overline{\chi}^1(p) = s_p$ and $\overline{\chi}^2(p) = s_p$ in this case, we obtain the necessary identity. Now if we put $\overline{\varphi}(F) = F^*$, then the mappings of Hausdorff spectra $\overline{\omega}_{\mathcal{Y}\mathcal{X}}^1 = \omega(\overline{\varphi}, \overline{\phi}, \overline{\chi}^1)$, $\overline{\omega}_{\mathcal{Y}\mathcal{X}}^2 = \omega(\overline{\varphi}, \overline{\phi}, \overline{\chi}^2)$ are equivalent to $\omega_{\mathcal{Y}\mathcal{X}}$ and $\omega'_{\mathcal{Y}\mathcal{X}}$ respectively by (Φ) . Therefore we define $||\omega_{\mathcal{Y}\mathcal{X}}|| + ||\omega'_{\mathcal{Y}\mathcal{X}}||$ to be the element of $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X}, \mathcal{Y})$ containing

$$\{\omega_{p\overline{\chi}^1(p)} + \omega_{p\overline{\chi}^2(p)}\}_{p\in |F^*|} \quad (F\in\mathfrak{F}, \ F^* = \overline{\varphi}(F)).$$

Clearly, this class does not depend on the choice of representatives $\omega_{\mathcal{YX}}$, $\omega'_{\mathcal{YX}}$ in their equivalence classes. The operation of addition which has been introduced converts $\operatorname{Hom}_{\mathcal{H}}(\mathcal{X}, \mathcal{Y})$ into an abelian group. Now the extension of the functor H to the category \mathcal{H} and its additivity there are obvious. The proposition is proved.

We will reserve the notation H = Haus for the case $\mathcal{G} = TLC$.

We introduce a semiabelian structure on the category \mathcal{H} . For any objects $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathcal{H}$ the law of composition defines a bilinear mapping

$$\operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Y}) \times \operatorname{Hom}_{\mathcal{H}}(\mathcal{Y},\mathcal{Z}) \to \operatorname{Hom}_{\mathcal{H}}(\mathcal{X},\mathcal{Z}).$$

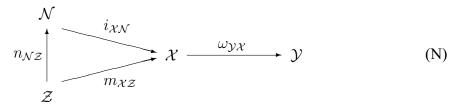
Thus \mathcal{H} is an additive category.

Proposition 2. (See [1].) The category \mathcal{H} is semiabelian.

Proof. Let $||\omega_{\mathcal{YX}}|| : \mathcal{X} \to \mathcal{Y}$, where \mathcal{X}, \mathcal{Y} are Hausdorff spectra over \mathcal{G} . We will construct for a morphism $||\omega_{\mathcal{YX}}||$ of the category \mathcal{H} its kernel and cokernel. We choose in the class $||\omega_{\mathcal{YX}}||$ some element $\omega_{\mathcal{YX}} \in \text{Spect } \mathcal{G}$ so that $\omega_{\mathcal{YX}} = \omega(\varphi, \phi, \chi)$. Now for each $s \in |F|$, where $F \in \mathfrak{F}$, let us consider an object $N_s \in \mathcal{G}, N_s \subset X_s$, provided with the topology induced from X_s , and such that $N_s = \ker \omega_{ps}$ for $s = \chi(p)$ $(p \in |\varphi(F)|)$. By (Φ) the restriction $n_{s's}$ of the morphism $h_{s's}$ translates N_s into $N_{s'}$, therefore the family $\mathcal{N} = \{N_s, \mathfrak{F}, n_{s's}\}$ is a Hausdorff subspectrum of the Hausdorff spectrum $\mathcal{X} = \{X_s, \mathfrak{F}, h_{s's}\}$. We will show that the identity embedding $i_{\mathcal{XN}} : \mathcal{N} \to \mathcal{X}$ is the kernel of $\omega_{\mathcal{YX}}$. For this it is enough to establish that for any morphism $m_{\mathcal{XZ}} : \mathcal{Z} \to \mathcal{X}$ of the category Spect \mathcal{G} such that $\omega_{\mathcal{YX}} \circ m_{\mathcal{XZ}} = 0$,

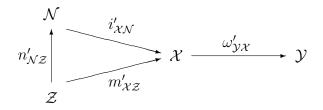
$$\mathcal{Z} \in \operatorname{Spect} \mathcal{G}, \quad \mathcal{Z} = \{Z_t, \mathfrak{F}^\circ, h_{t't}\}$$

there exists a morphism $n_{NZ} : Z \to N$ of the category Spect G such that the following diagram is commutative:

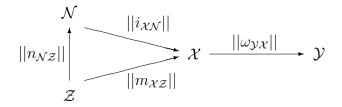


(Here the zero mapping of spectra signifies that for $\omega_{\mathcal{YX}} = 0 = \omega_{\mathcal{YX}} \circ m_{\mathcal{XZ}}$ its component morphisms $\omega_{pt} = \omega_{ps} \circ \omega_{st}$ are such that $\omega_{pt}(Z_t) = 0$.)

At the same time it is clear that, if for $\omega'_{\mathcal{YX}} \sim \omega_{\mathcal{YX}}$, $m'_{\mathcal{XZ}} \sim m_{\mathcal{XZ}}$ such that $\omega'_{\mathcal{YX}} \circ m'_{\mathcal{XZ}} = 0'$, where $0' \sim 0$, there also exist $n'_{\mathcal{NZ}} \in \text{Spect } \mathcal{G}$ and $i'_{\mathcal{XN}} \sim i_{\mathcal{XN}}$ such that the diagram



is commutative, then $n'_{\mathcal{NZ}} \sim n_{\mathcal{NZ}}$. Therefore, if diagram (N) applies, each morphism $||\omega_{\mathcal{YX}}||$ of the category \mathcal{H} such that $||\omega_{\mathcal{YX}}|| \circ ||m_{\mathcal{XZ}}|| = 0$, where $||m_{\mathcal{XZ}}|| : \mathcal{Z} \to \mathcal{X}$, and $i_{\mathcal{XN}} \in ||i_{\mathcal{XN}}||$, has kernel $||i_{\mathcal{XN}}||$ such that there exists $||n_{\mathcal{NZ}}||$ with commutative diagram



Thus, for the existence of the kernel of the morphism $||\omega_{\mathcal{YX}}||$ it is enough to establish the existence of $n_{\mathcal{NZ}} : \mathcal{Z} \to \mathcal{N}$ and the commutativity of diagram (N).

If the mapping of spectra is $m_{\mathcal{XZ}} = m(\varphi^{\circ}, \phi^{\circ}, \chi^{\circ})$, then taking into account the fact that $\operatorname{Im} \omega_{s\chi^{\circ}(s)} \subset N_s$ $(s \in |\phi^{\circ}(F^{\circ})|, F^{\circ} \in \mathfrak{F}^{\circ})$ by assumption, we can construct a mapping of Hausdorff spectra $n_{\mathcal{NZ}} : \mathcal{Z} \to \mathcal{N}$, where $n_{\mathcal{NZ}} = n(\varphi^{\circ}, \phi^{\circ}, \chi^{\circ})$, so that its constituent morphisms $\widehat{\omega}_{s\chi^{\circ}(s)} : Z_{\chi^{\circ}(s)} \to N_s$ are restrictions of the morphisms $\omega_{s\chi^{\circ}(s)}$. Commutativity of the diagram is obvious.

Now we will construct the cokernel of the morphism $||\omega_{\mathcal{YX}}||$; let $\omega_{\mathcal{YX}} \in ||\omega_{\mathcal{YX}}||$. For each $p \in |\varphi(F)|$ $(F \in \mathfrak{F})$ let us consider the factor group $R_p = Y_p/\mathrm{Im}\,\omega_{p\chi(p)}$ with the topology

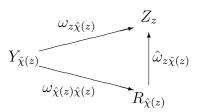
induced from Y_p . It is clear that because of (Φ) the subgroups $\operatorname{Im} \omega_{p\chi(p)}$ form a Hausdorff spectrum, therefore the factor groups R_p $(p \in |\varphi(F)|)$ also form a Hausdorff spectrum; let

$$\mathcal{R} = \{R_p, \mathfrak{F}_0^1, h_{p'p}\}, \quad \mathcal{Y}_0 = \{Y_p, \mathfrak{F}_0^1, h_{p'p}\},$$

where $\mathfrak{F}_0^1 = \mathfrak{F}^1|_{\varphi(\mathfrak{F})}$ (without loss of generality we may assume that $\varphi(\mathfrak{F}) = \mathfrak{F}^1$). Let us denote by $\omega_{\mathcal{R}\mathcal{Y}} : \mathcal{Y} \to \mathcal{R}$ the canonical mapping of Hausdorff spectra; we will show that $||\omega_{\mathcal{R}\mathcal{Y}}||$ is the cokernal of the morphism $||\omega_{\mathcal{Y}\mathcal{X}}||$. For this it follows that we have to establish that, for any morphism $m_{\mathcal{Z}\mathcal{Y}} : \mathcal{Y} \to \mathcal{Z}$ of the category Spect \mathcal{G} such that $m_{\mathcal{Z}\mathcal{Y}} \circ \omega_{\mathcal{Y}\mathcal{X}} = 0$, there exists a morphism $n_{\mathcal{Z}\mathcal{R}} : \mathcal{R} \to \mathcal{Z}$ of the category Spect \mathcal{G} such that the following diagram is commutative:

$$\mathcal{X} \xrightarrow{\omega_{\mathcal{Y}\mathcal{X}}} \mathcal{Y} \xrightarrow{m_{\mathcal{Z}\mathcal{Y}}} \stackrel{\mathcal{Z}}{\uparrow} n_{\mathcal{Z}\mathcal{R}} \qquad (K)$$

If $m_{\mathcal{Z}\mathcal{Y}} = m(\widehat{\varphi}, \widehat{\phi}, \widehat{\chi})$, then $n_{\mathcal{Z}\mathcal{R}} = n(\widehat{\varphi}, \widehat{\phi}, \widehat{\chi})$, and since $\omega_{z\widehat{\chi}(z)}(Y_{\widehat{\chi}(z)}) = 0$ for all $z \in |\widehat{\varphi}(F^1)|$ $(F^1 \in \mathfrak{F})$, then $\operatorname{Im} \omega_{\widehat{\chi}(z)\chi(\widehat{\chi}(z))} \subset N_{\widehat{\chi}(z)}$, and, consequently, because the category \mathcal{G} is semiabelian there exists a morphism $\widehat{\omega}_{z\widehat{\chi}(z)} : R_{\widehat{\chi}(z)} \to Z_t$ such that the following diagram is commutative:



Thus, as is not difficult to see, the set of morphisms $\hat{\omega}_{z\hat{\chi}(z)}$ defines a mapping of Hausdorff spectra in such a way that diagram (K) is commutative. The proposition is proved.

Библиографический список

- 1. Palamodov V.P.: Functor of projective limit in the category of topological linear spaces. Math. Collect., V.75. N4 (1968), P.567–603.
- 2. Palamodov V.P.: Homological methods in the theory of locally convex spaces. UMN., V.26. N1(1971), P.3–65.
- Smirnov E.I. Hausdorff spectra in functional analysis. Springer-Verlag, London, 2002. 209p.
- 4. Zabreiko P.P., Smirnov E.I.: On the closed graph theorem. Siberian Math. J., V.18. N.2 (1977), P.305–316.
- 5. Rajkov D.A.: On the closed graph theorem for topological linear spaces . Siberian Math. J., V.7. N2 (1966), P.353–372.

- 6. Smirnov E.I.: On continuity of semiadditive functional. Math. Notes., 1976. V.19. N4 (1976), P.541–548.
- Wilde M. : Reseaus dans les espaces lineaires a seminormes. Mem. Soc. Roi. Sci. Liege., V.19. N4 (1969), P.1–104.
- 8. Smirnov E.I.: The theory of Hausdorff spectra in the category of locally convex spaces. Functiones et Aproximatio, XXIV. UAM, 1996, P.17–33.
- 9. Retakh V.S.: On dual homomorphism of locally convex spaces. Funct. Anal. and its Appl., V.3. N4 (1969), P.63–71.
- 10. Nobeling C. : Uber die Derivierten des Inversen und des Directen Limes einer Modulfamilie. Topology I., 1962, P.47–61.
- 11. Cartan A., Heilenberg C. Homological algebra. M.: Mir. 1960, 510p.
- 12. Smirnov E.I. Hausdorff spectra and the closed graph theorem. In: Pitman Research Notes in Mathematics Series, Longman, England, 1994. P.37–50.