УДК 512.7

А. С. Тихомиров, М. Е. Сорокина

О конструкции многообразия модулей стабильных пучков ранга два с классами Чженя $c_1 = 0$, $c_2 = 3$ на поверхности Хирцебруха F_1 (Часть II)

Ранее, в статье [1], было построено многообразие X, бирационально изоморфное многообразию $M_{F_1}^H(2;0,3)$ модулей H-стабильных по Гизекеру когерентных пучков ранга два с классами Чженя $c_1=0$, $c_2=3$ на поверхности Хирцебруха F_1 . В настоящей статье получено семейство $\mathbf E$ с базой X пучков ранга два с указанными инвариантами, такое, что пучки $\mathbf E\mid S\times\{x\}$ H-стабильны для всех $x\in X$ вне объединения двух гладких семимерных подсхем в X.

Ключевые слова: многообразие модулей, стабильный пучок ранга два на поверхности, поверхность Хирцебруха.

A. S. Tikhomirov, M. E. Sorokina

About Construction of Variety of Modules of Stable Bunches of Rank Two with Chzhen's Classes $c_1 = 0$, $c_2 = 3$ on the Hirzebruch Surface F_1 (Part II)

In the previous article [1] we have constructed the manifold X birationally isomorphic to the Gieseker-Maruyama moduli space $M_{F_1}^H(2,0,3)$ of H-stable coherent rank-2 sheaves with Chzhen's classes $c_1=0$, $c_2=3$ on the Hirzebruch surface F_1 . In this paper we describe a family \mathbf{E} with the base X of rank-2 sheaves with the above invariants on F_1 , such one that the sheaf $\mathbf{E} \mid S \times \{x\}$ is H-stable for all points $x \in X$ lying outside the union of two smooth seven-dimensional subschemes of X.

Keywords: moduli space, stable rank-2 sheaf on a surface, Hirzebruch surface.

§ 0. Введение

Настоящая статья является продолжением работы [1], в которой мы рассматриваем многообразие $M_S^H(2;0,3)$ модулей когерентных стабильных относительно специально выбранной поляризации H пучков ранга 2 на поверхности Хирцебруха $S:=F_1$ с классами Чженя $c_1=0$, $c_2=3$ и поставили задачу получить точную алгебро-геометрическую конструкцию данного многообразия.

Мы используем следующие обозначения: $\phi: S \to P^2$ — раздутие проективной плоскости P^2 в точке x_0 , $p: S \to P^1$ — стандартная проекция, $O_S(1,0) := \phi^* O_{p^2}(1)$, $O_S(0,1) := p^* O_{p^1}(1)$, $c_1(O_S(1,0)) =: \tau$, $c_1(O_S(0,1)) =: h$, $M_- := M_S^{H_-}(2;0,3)$ — многообразие модулей когерентных пучков ранга 2 с указанными классами Чженя, стабильных относительно поляризации $H_- := \tau + 2h$.

В работе [1] построено многообразие X, бирационально изоморфное M_{-} ; при этом морфизм $X \to M_{-}$ не определен в точках объединения гладкого дивизора и гладкой семимерной схемы на X. Многообразие X получается раздутием проективного спектра локально свободного пучка ранга 4 на схеме Гильберта $Hilb^3S$. Получено семейство $\mathcal E$ пучков с базой X, общий член которого H_{-} -стабилен.

В настоящей работе мы выполняем элементарную перестройку пучка \mathcal{E} вдоль дивизора; полученное при этом семейство \mathbf{E} пучков на S не содержит прямых сумм пучков ранга 2

42

[©] Тихомиров А. С., Сорокина М. Е., 2012

(предложение). Основной результат статьи — H_{-} -стабильность пучков семейства ${\bf E}$ для точек X, не содержащихся в объединении двух гладких семимерных подсхем на X, — изложен в теореме. В заключение мы формулируем гипотезу о точном виде бирациональной перестройки многообразия X в многообразие M_{-} .

\S 1. Вычисление нормального расслоения к подсхеме Y в $Hilb^3S$, содержащей коллинеарные тройки

Напомним обозначения работы [1]: $H_0:=Hilb^3S$ — схема Гильберта нульмерных подсхем длины 3 на поверхности S, Γ — универсальный цикл в $S\times H_0$, Y — приведенная подсхема в H_0 , точки которой соответствуют подсхемам Z_3 на S, содержащимся в одном слое проекции $p:S\to P^1$. Схема Y гладкая и имеет коразмерность 2 в H_0 .

В этом параграфе мы докажем утверждение, необходимое для последующих построений.

Пусть
$$\pi: Y = P(S^3(O_{p^1} \oplus O_{p^1}(-1))) \to P^1$$
 – проекция, $O_Y(1,0) := O_{P(S^3(O_{p^1} \oplus O_{p^1}(-1)))/P^1}(1)$,

$$O_{Y}(0,1) \coloneqq \pi^{*}O_{p^{1}}(1), \quad \theta \coloneqq p \times \pi : \ S \times Y \to P^{1} \times P^{1}, \quad i_{\Delta} : \ P^{1} \to P^{1} \times P^{1} \quad - \quad \text{диагональное} \quad \text{вложение},$$

$$W \coloneqq P^{1} \times_{p^{1} \times P^{1}} (S \times Y), \ \theta \mid W : W \to P^{1} \quad - \quad \text{индуцированная} \quad \text{проекция} \quad \text{со слоем} \quad P^{1} \times P^{3},$$

$$O_{S \times Y}(W) = O_S(0,1) \boxtimes O_Y(0,1),$$
 (1)

 $Z := Y \times_{H_0} \Gamma$ – подсхема в $S \times H_0$, $Z \to W$ – дивизориальное вложение,

$$O_W(Z) := O_S(3,0) \boxtimes O_Y(1,0) | W,$$
 (2)

 $S \stackrel{p_1}{\longleftarrow} S \times Y \stackrel{p_2}{\longrightarrow} Y$ — проекции на первый и второй сомножители.

Лемма. Нормальное расслоение к подсхеме Y в H_0 изоморфно $O_Y(-1,1) \oplus O_Y(-1,0)$.

Доказательство. Рассмотрим на $S \times Y$ точную тройку

$$0 \to O_{S \times Y}(-W) \to I_{Z.S \times Y} \to O_W(-Z) \to 0.$$

Тензорно умножая ее на $O_{S\times Y}(W)$, с учетом равенств (1) и (2) будем иметь:

$$0 \to O_{S \times Y} \to I_{Z,S \times Y} \otimes O_S(0,1) \boxtimes O_Y(0,1) \to O_S(-3,1) \boxtimes O_Y(-1,1) \mid W \to 0. \tag{3}$$

Пучок $O_s(-3,1) \boxtimes O_v(-1,1) | W$ включается в точную тройку

$$0 \rightarrow O_S(-3,0) \boxtimes O_Y(-1,0) \rightarrow O_S(-3,1) \boxtimes O_Y(-1,1) \rightarrow O_S(-3,1) \boxtimes O_Y(-1,1) \mid W \rightarrow 0. \tag{4}$$

Применим к точным последовательностям (3) и (4) функтор p_{2*} :

$$0 \to O_Y \to p_{2*}(I_{Z,S \times Y} \otimes O_S(0,1) \boxtimes O_Y(0,1)) \to p_{2*}(O_S(-3,1) \boxtimes O_Y(-1,1) \mid W) \to 0 \to 0$$

$$\rightarrow H^2(O_S(-3,0)) \otimes O_Y(-1,0) \rightarrow H^2(O_S(-3,1)) \otimes O_Y(-1,1).$$

Так как $H^0(O_S(-3,0))=H^0(O_S(-3,1))=H^1(O_S(-3,0))=H^2(O_S(-3,1))=0$, $H^1(O_S(-3,1))=H^2(O_S(-3,0))=k$, то $p_{2*}(O_S(-3,1)\boxtimes O_Y(-1,1)|W)=0$, так что имеет место изоморфизм

$$p_{2*}(I_{Z,S\times Y}\otimes O_S(0,1)\boxtimes O_Y(0,1))\cong O_Y$$
(5)

и точна тройка $0 \to O_Y(-1,1) \to R^1 p_{2*}(O_S(-3,1) \boxtimes O_Y(-1,1) | W) \to O_Y(-1,0) \to 0$, из которой следует, что

$$R^1 p_{2*}(O_S(-3,1) \boxtimes O_Y(-1,1) | W) \cong O_Y(-1,1) \oplus O_Y(-1,0).$$
 (6)

Также

$$R^{1}p_{2*}(I_{Z,S\times Y}\otimes O_{S}(0,1)\boxtimes O_{Y}(0,1))\cong R^{1}p_{2*}(O_{S}(-3,1)\boxtimes O_{Y}(-1,1)|W).$$
(7)

Пучок $R^1p_{2*}(I_{Z,S\times Y}\otimes O_S(0,1)\boxtimes O_Y(0,1))$ изоморфен относительному пучку $Ext^1_{p_2}(O_{S\times Y}(-W),I_{Z,S\times Y})$, который, как нетрудно видеть, отождествляется с нормальным расслоением N_{Y/H_0} к Y в H_0 . Из (6) и (7) тогда следует требуемое. \square

§ 2. Перестройка семейства ${\cal E}$ в семейство ${\bf E}$ пучков, H_- -стабильных в точках $X \setminus \Phi \cup (D \cap \Psi)$

Многообразие X в работе [1] определяется следующим образом. Пусть $p_0: S \times H_0 \to H_0$ — проекция на второй сомножитель. Относительный пучок $Ext^1_{p_0}(I_{\Gamma,S \times H_0} \otimes O_S(0,1) \boxtimes O_{H_0}, O_S(0,-1) \boxtimes O_{H_0})$ на H_0 локально свободен и имеет ранг 4. Через X_0 обозначим многообразие $P(Ext^1_{p_0}(I_{\Gamma,S \times H_0} \otimes O_S(0,1) \boxtimes O_{H_0}, O_S(0,-1) \boxtimes O_{H_0}))$. Рассмотрим раздутие $\sigma_Y: H \to H_0$ многообразия Гильберта H_0 вдоль Y. Тогда X по определению есть расслоенное произведение $X_0 \times_{H_0} H$.

Приведем определение пучка \mathcal{E} . Рассмотрим универсальное расширение над $S \times X_0$:

$$0 \to O_S(0,-1) \boxtimes O_{X_0} \to \mathcal{E}_0 \to I_{(\mathrm{id}_S \times g_0)^{-1} \Gamma, S \times X_0} \otimes O_S(0,1) \boxtimes L_0^{-1} \to 0, \tag{8}$$

в котором $g_0: X_0 \to H_0$ — проекция, L_0 — антитавтологическое линейное подрасслоение в $g_0^* Ext^1_{p_0}(I_{\Gamma,S \times H_0} \otimes O_S(0,1) \boxtimes O_{H_0}, O_S(0,-1) \boxtimes O_{H_0})$. Пусть $\sigma: X \to X_0$ — морфизм, $Z_X := (\operatorname{id}_S \times (\sigma \circ g_0))^{-1}\Gamma$, $L:=\sigma^*L_0$. Пучок $\mathcal E$ определяется нетривиальным расширением

$$0 \to O_S(0,-1) \boxtimes O_X \to \mathcal{E} \to I_{Z_X,S \times X} \otimes O_S(0,1) \boxtimes L^{-1} \to 0, \tag{9}$$

которое получается из (8) применением $(\mathrm{id}_S \times \sigma)^*$.

Пусть $D \subset X$ — исключительный дивизор раздутия $\sigma: X \to X_0$, Φ — гладкая семимерная подсхема в X, определение и точное геометрическое описание которой дано в [1]. Пучки $\mathcal{E}|S \times \{x\}$ H_- -стабильны для всех $x \in X \setminus (D \cup \Phi)$ [1, теорема].

В данном параграфе мы строим семейство ${\bf E}$ пучков на S, H_{-} -стабильных в общей точке дивизора D, совпадающее с ${\bf E}$ вне D.

Ограничим расширение (9) на дивизор $\mathbf{D} := S \times D$:

$$0 \to O_{S}(0,-1) \boxtimes O_{D} \to \mathcal{E}_{\mathbf{p}} \to I_{Z_{\mathbf{p}},\mathbf{p}} \otimes O_{S}(0,1) \boxtimes L^{-1} \to 0.$$

$$\tag{10}$$

3десь $\mathcal{E}_{\mathbf{D}} := \mathcal{E} | \mathbf{D}, Z_{\mathbf{D}} := Z_{X} \cap \mathbf{D}.$

Рассмотрим проекцию $pr_2: S \times D \to D$. Применение функтора pr_{2*} к тройке (10) дает изоморфизм

$$\mathcal{L} := pr_{2*} \mathcal{E}_{\mathbf{D}} \cong pr_{2*} (I_{Z_{\mathbf{D}}, \mathbf{D}} \otimes O_S(0, 1) \boxtimes L^{-1}). \tag{11}$$

Поскольку $Z_{\mathbf{p}} = Z \times_{S \times Y} (S \times D) = Z \times_{Y} D$, то

$$pr_{2*}(I_{Z_{\mathbf{D}},\mathbf{D}} \otimes O_{S}(0,1) \boxtimes O_{D}) = \psi^{*} p_{2*}(I_{Z,S \times Y} \otimes O_{S}(0,1) \boxtimes O_{Y}),$$
 (12)

где $\psi: D \to Y$, $p_2: S \times Y \to Y$ – естественные проекции. Согласно формуле (5) $\psi^* p_{2*}(I_{Z.S \times Y} \otimes O_S(0,1) \boxtimes O_Y) \cong \psi^* O_Y(0,-1)$, а следовательно,

$$\mathcal{L} = \psi^* O_Y(0, -1) \otimes L^{-1}, \tag{13}$$

так что пучок \mathcal{L} локально свободен ранга 1 на D. Обозначим $\mathcal{L} := O_{\mathcal{S}} \boxtimes \mathcal{L}$.

Пусть $D_{\scriptscriptstyle Y}$ — исключительный дивизор раздутия $\sigma_{\scriptscriptstyle Y}\colon H\to H_{\scriptscriptstyle 0}$. Далее будем пользоваться следующими обозначениями: $O_{\scriptscriptstyle D}(1,0,0,0)\coloneqq O_{\scriptscriptstyle D/D_{\scriptscriptstyle Y}}(1)\,,\qquad O_{\scriptscriptstyle D}(0,1,0,0)\coloneqq O_{\scriptscriptstyle D_{\scriptscriptstyle Y}/Y}(1)\,,$

 $O_D(0,0,a,b) := \psi^* O_Y(a,b)$. В частности,

$$L \mid D = O_D(1,0,0,0), \ O_D(D) = O_D(0,-1,0,0),$$

$$\mathcal{L} = O_D(-1,0,0,-1), \quad \mathcal{L}(\mathbf{D}) = O_S \boxtimes O_D(-1,-1,0,-1).$$
(14)

Предложение. Существует элемент $\xi \in \operatorname{Ext}^1(\mathcal{L}(\mathbf{D}), \mathcal{E})$, определяющий нетривиальное расширение

$$0 \to \mathcal{E} \to \mathbf{E} \to \mathcal{L}(\mathbf{D}) \to 0, \tag{15}$$

такое, что для любой точки $x \in D$ пучок $\mathbf{E} \mid S \times \{x\}$ является нетривиальным расширением $0 \to I \longrightarrow \mathbf{F} \mid S \times \{x\} \to 0 \to 0$

$$0 \to I_{Z_3} \to \mathbb{E} \mid S \times \{y\} \to O_S \to 0,$$

где Z_3 – нульмерная подсхема длины 3 на S , содержащаяся в одном слое проекции $\,p:S o P^1\,.$

Доказательство. Вычислим $\operatorname{Ext}^{1}(\mathcal{L}(\mathbf{D}), \mathcal{E})$.

Применим $Hom_{O_{S \vee Y}}(\mathbf{L}(\mathbf{D}),-)$ к точной тройке (9):

$$0 \to O_{S}(0,-1) \boxtimes O_{D}(1,0,0,1) \to \operatorname{Ext}_{O_{S\times X}}^{1}(\mathbf{L}(\mathbf{D}),\mathbf{E}) \to$$

$$\to \operatorname{Ext}_{O_{S\times X}}^{1}(\mathbf{L}(\mathbf{D}),I_{Z_{X},S\times X} \otimes O_{S}(0,1) \boxtimes L^{-1}) \to 0. \tag{16}$$

Обозначим через A_1 пучок $\mathit{Ext}^1_{O_{S \times X}}(\mathcal{L}(\mathbf{D}), I_{Z_X, S \times X} \otimes O_S(0,1) \boxtimes L^{-1})$. Применим тот же функтор к точной последовательности

$$0 \to I_{Z_{X},S \times X} \otimes O_{S}(0,1) \boxtimes L^{-1} \to O_{S}(0,1) \boxtimes L^{-1} \to O_{Z_{X}} \otimes O_{S}(0,1) \boxtimes L^{-1} \to 0:$$

$$0 \to \mathbf{A}_{1} \to O_{S}(0,1) \boxtimes O_{D}(0,0,0,1) \to \operatorname{Ext}_{O_{S \times X}}^{1}(\mathbf{L}(\mathbf{D}), O_{Z_{X}} \otimes O_{S}(0,1) \boxtimes L^{-1}) \to$$

$$\to \operatorname{Ext}_{O_{S \times X}}^{2}(\mathbf{L}(\mathbf{D}), I_{Z_{X},S \times X} \otimes O_{S}(0,1) \boxtimes L^{-1}). \tag{17}$$

Так как пучок \mathcal{L} имеет гомологическую размерность 1, то $Ext^2_{O_{S \times X}}(\mathcal{L}(\mathbf{D}), I_{Z_X, S \times X} \otimes O_S(0,1) \boxtimes L^{-1}) = 0$. Обозначим

$$\mathbf{A}_2 := Ext^1_{O_{S \times X}}(\mathbf{L}(\mathbf{D}), O_{Z_X} \otimes O_S(0,1) \boxtimes L^{-1}).$$

Пучок $\mathcal{L}(\mathbf{D})$ включается в точную тройку

$$0 \to O_S \boxtimes L^{-1} \to O_S \boxtimes (O_X(D) \otimes L^{-1}) \to \mathcal{L}(\mathbf{D}) \otimes \psi^* O_Y(0,1) \to 0.$$

Применим функтор $Hom_{O_{S\times X}}(-,O_{Z_X}\otimes O_S(0,1)\ L^{-1})$ к этой точной последовательности: $0\to Hom_{O_{S\times X}}(O_S\boxtimes (O_X(D)\otimes L^{-1}),O_{Z_X}\otimes O_S(0,1)\boxtimes L^{-1})\to Hom_{O_{S\times X}}(O_S\boxtimes L^{-1},O_{Z_X}\otimes O_S(0,1)\boxtimes L^{-1})\to A_2\otimes \psi^*O_Y(0,-1)\to 0$, или

$$0 \to O_{Z_X} \otimes O_S(0,1) \boxtimes O_X(-D) \to O_{Z_X} \otimes O_S(0,1) \boxtimes O_X \to \mathbf{A}_2 \otimes \psi^* O_Y(0,-1) \to 0, \text{ а значит,}$$

$$\mathbf{A}_{2} = O_{S}(0,1) \boxtimes O_{D}(0,0,0,1) | Z_{\mathbf{D}}. \tag{18}$$

Объединив (17) и (18), получим точную последовательность $0 \to A_1 \to O_S(0,1) \boxtimes O_D(0,0,0,1) \to O_S(0,1) \boxtimes O_D(0,0,0,1) | Z_{\bf p} \to 0$, откуда

$$\mathbf{A}_{1} = I_{Z_{\mathbf{D}}, \mathbf{D}} \otimes O_{S}(0, 1) \boxtimes O_{D}(0, 0, 0, 1). \tag{19}$$

Из (16) и (19) тогда следует, что точна последовательность

$$0 \to O_S(0,-1) \boxtimes O_D(1,0,0,1) \to \operatorname{Ext}^1_{O_{S \times X}}(\mathfrak{L}(\mathbf{D}),\mathfrak{E}) \to$$

$$\to I_{Z_{\mathbf{D}},\mathbf{D}} \otimes O_S(0,1) \boxtimes O_D(0,0,0,1) \to 0. \tag{20}$$

Из (20), (11) и (13) следует изоморфизм

$$pr_{2*}Ext^1_{O_{S\times X}}(\mathcal{L}(\mathbf{D}),\mathcal{E})\cong pr_{2*}(I_{Z_{\mathbf{D}},\mathbf{D}}\otimes O_S(0,1)\boxtimes O_D(0,0,0,1))\cong O_D,$$

где $pr_2: S \times D \rightarrow D$ – проекция.

В качестве пучка \mathbf{E} выберем расширение (15), задаваемое элементом $1 \in H^0(O_D)$ при каноническом отождествлении $H^0(O_D) \cong H^0(pr_{2*}Ext^1_{O_{S \smallsetminus Y}}(\mathbf{L}(\mathbf{D}), \mathbf{E})) \cong \operatorname{Ext}^1(\mathbf{L}(\mathbf{D}), \mathbf{E}).$

Далее, ограничим точную тройку (15) на \mathbf{D} :

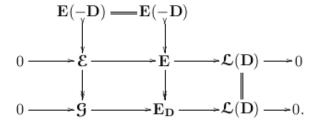
$$0 \to \mathcal{G} \to \mathbf{E}_{\mathbf{D}} \to \mathcal{L}(\mathbf{D}) \to 0,$$
 (21)

где $\mathbf{S} := \operatorname{coker}(Tor_1^{O_{S \times X}}(\mathbf{L}(\mathbf{D}), O_{\mathbf{D}}) \to \mathbf{E}_{\mathbf{D}})$. Пусть $y \in D$. Так как $\mathbf{S} \mid S \times \{y\} \cong I_{Z_3}$ — пучок идеалов нульмерной схемы длины 3 на S и $\mathbf{L}(\mathbf{D}) \mid S \times \{y\} \cong O_S$, то пучок $\mathbf{E} \mid S \times \{y\}$ является расширением вида $0 \to I_{Z_3} \to \mathbf{E} \mid S \times \{y\} \to O_S \to 0$ и его классы Чженя c_1 и c_2 равны 0 и 3 соответственно.

Элемент $\zeta \in \operatorname{Ext}^1(\mathcal{L}(\mathbf{D}), \mathbf{S})$, задающий тройку (21), является образом элемента $1 \in H^0(O_D) \cong \operatorname{Ext}^1(\mathcal{L}(\mathbf{D}), \mathbf{E})$ при морфизме

$$\widetilde{s}: \operatorname{Ext}^{1}(\mathcal{L}(\mathbf{D}), \mathcal{E}) \to \operatorname{Ext}^{1}(\mathcal{L}(\mathbf{D}), \mathcal{G}).$$
 (22)

Рассмотрим коммутативную диаграмму



Ограничим первый столбец диаграммы на **D**:

$$0 \to \mathcal{L} \to \mathcal{E}_{\mathbf{D}} \to \mathcal{G} \to 0.$$

Применим к полученной точной последовательности функтор $\mathit{Hom}_{\mathcal{O}_{\mathbf{D}}}(\mathcal{L}\left(\mathbf{D}\right),\!-)$:

$$0 \to O_{\mathbf{D}}(-\mathbf{D}) \to \mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}) \to Hom_{O_{\mathbf{D}}}(\mathcal{L}(\mathbf{D}), \mathcal{G}) \to 0.$$

Взяв прямой образ этой тройки при морфизме $p_X: S \times X \to X$, получим изоморфизм

$$R^1 p_{X_*}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D})) \simeq R^1 p_{X_*} Hom_{O_{\mathbf{D}}}(\mathcal{L}(\mathbf{D}), \mathcal{G}).$$

Поскольку

$$\operatorname{Ext}^{1}(\mathcal{L}(\mathbf{D}), \mathbf{G}) \simeq H^{1}(Hom_{O_{S \times X}}(\mathcal{L}(\mathbf{D}), \mathbf{G})) \simeq H^{0}(R^{1}p_{X_{*}}Hom_{O_{S \times X}}(\mathcal{L}(\mathbf{D}), \mathbf{G})),$$

то

$$\operatorname{Ext}^{1}(\mathcal{L}(\mathbf{D}), \mathcal{G}) \simeq H^{0}(R^{1}p_{X_{*}}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}))).$$
 (23)

Проверим, что сечение

$$s \in H^0(R^1p_{X_*}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}))) = H^0(R^1pr_{2_*}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}))),$$

соответствующее элементу ζ при изоморфизме (23), не обращается в нуль во всех точках $y \in D$. Это означает, что для всех $y \in D$ точные тройки $0 \to I_Z$, $\to \mathbf{E} \mid S \times \{y\} \to O_S \to 0$ нерасщепимы.

Из (10) и (14) следует, что пучок $\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D})$ включается в точную последовательность $0 \to O_S(0,-1) \boxtimes O_D(1,1,0,1) \to \mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}) \to I_{Z_{\mathbf{D}},\mathbf{D}} \otimes O_S(0,1) \boxtimes O_D(0,1,0,1) \to 0$,

а следовательно, $R^1 pr_{2*}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D})) \cong R^1 pr_{2*}(I_{Z_{\mathbf{D}},\mathbf{D}} \otimes O_S(0,1) \boxtimes O_D(0,1,0,1))$. Аналогично (12) имеем:

 $R^{1} pr_{2*}(I_{Z_{\mathbf{D}},\mathbf{D}} \otimes O_{S}(0,1) \boxtimes O_{D}(0,1,0,1)) = \psi^{*} R^{1} p_{2*}(I_{Z,S \times Y} \otimes O_{S}(0,1) \boxtimes O_{Y}(0,1)) \otimes O_{D}(0,1,0,0),$

где пучок $R^1p_{2*}(I_{Z,S imes Y}\otimes O_S(0,1)\boxtimes O_Y(0,1))$ изоморфен N_{Y/H_0} (см. доказательство леммы). Тогда

$$R^1 pr_{2*}(\boldsymbol{\mathcal{E}}_{\mathbf{D}} \otimes \boldsymbol{\mathcal{L}}^{-1}(-\mathbf{D})) = \boldsymbol{\psi}^* N_{\boldsymbol{\mathcal{Y}}\boldsymbol{H}_0} \otimes O_D(0,1,0,0),$$

где $\psi: D \to Y$ – проекция.

 ψ раскладыватся в композицию $\psi = \pi_{\scriptscriptstyle Y} \circ \pi_{\scriptscriptstyle D}$, где $\pi_{\scriptscriptstyle D} : D \to D_{\scriptscriptstyle Y}$, Морфизм $\pi_{_{Y}}: P(N_{_{Y/H_{_{\mathbf{0}}}}}^{\scriptscriptstyle \vee}) = D_{_{Y}} \to Y \; . \qquad \text{ Имеем:} \qquad \psi_{*} \; R^{_{1}} pr_{_{2}*}(\boldsymbol{\mathcal{E}}_{_{\mathbf{D}}} \otimes \boldsymbol{\mathcal{L}}^{_{-1}}(-\mathbf{D})) = N_{_{Y/H_{_{\mathbf{0}}}}} \otimes \psi_{*} O_{_{D}}(0,1,0,0) = 0 \; .$ $N_{Y/H_0} \otimes \pi_{Y*} O_{D_V}(1,0,0) = N_{Y/H_0} \otimes N_{Y/H_0}^{\vee} = 2O_Y \oplus O_Y(0,1) \oplus O_Y(0,-1).$ Следовательно, $H^{0}(R^{1}pr_{2*}(\mathcal{E}_{\mathbf{p}}\otimes\mathcal{L}^{-1}(-\mathbf{D}))) = H^{0}(2O_{v}\oplus O_{v}(0,1)\oplus O_{v}(0,-1)) =$ $H^0(\pi^*(2O_{_{p^1}}\oplus O_{_{p^1}}(1)\oplus O_{_{p^1}}(-1)))=H^0(2O_{_{p^1}}\oplus O_{_{p^1}}(1)\oplus O_{_{p^1}}(-1)),\quad \text{где}\quad \pi:Y\to P^1\quad -\quad \text{проекция}.$ Сечение $s_y \neq 0$ пучка $2O_y \oplus O_y(0,1) \oplus O_y(0,-1)$ обращается в нуль в какой-либо точке Y тогда и только тогда, когда соответствующее ему сечение $s_{p^1} \neq 0$ пучка $2O_{p^1} \oplus O_{p^1}(1) \oplus O_{p^1}(-1)$ обращается в нуль в какой-либо точке $y \in P^1$. Но сечение s (а значит, и s_{nl}) по построению Gинвариантно, где $G=Stab_{PGL(P^2)}(x_0)$. Так как группа G действует на P^1 транзитивно, то обращение $s_{_{p^1}}$ в нуль в точке $y_{_{}}$ противоречит G-инвариантности этой точки. Таким образом, $s_{_{p^1}}$ и $s_{_Y}$ нигде не $s_{D_{v}} \in H^{0}(\pi_{Y}^{*}N_{Y/H_{0}} \otimes O_{D_{v}}(1,0,0)) =$ в нуль. Соответственно, сечение $H^0(O_{D_v}(1,-1,1) \oplus O_{D_v}(1,-1,0))$ является G-инвариантным, где G – группа автоморфизмов расслоения над P^1 со слоем Aut(f)=PGL(f) над слоем f проекции $S \to P^1$, причем группа G действует транзитивно на слоях проекции $\pi_{\scriptscriptstyle Y}$, а значит, сечение $s_{\scriptscriptstyle D_{\scriptscriptstyle Y}}$ также нигде не обращается в нуль. Таким $s \in H^0(R^1p_{X_*}(\mathcal{E}_{\mathbf{D}} \otimes \mathcal{L}^{-1}(-\mathbf{D}))) = H^0(O_D(0,1,-1,1) \oplus O_D(0,1,-1,0)),$ образом, сечение задаваемое посредством морфизма (22) сечением $1 \in H^0(O_D)$, нигде не обращается в нуль. Пусть $y \in D$. Пучок $E = \mathbf{E} \mid S \times \{y\}$ на S является нетривиальным расширением вида

 $0 \to I_{Z_2,S} \to E \to O_S \to 0$. Среди таких пучков есть нестабильные. Пучок

имеет

E

дестабилизирующий подпучок I_x , $x\in Z_3$, тогда и только тогда, когда элемент $\xi\in \operatorname{Ext}^1(O_S,I_{Z_3})$ является образом ненулевого элемента $\xi'\in \operatorname{Hom}(O_S,k_x)$ при вложении $0\to \operatorname{Hom}(O_S,k_x)\to \operatorname{Ext}^1(O_S,I_{Z_3})$. Так как $\operatorname{Ext}^1(O_S,I_{Z_3})=k^2$ и $\operatorname{Hom}(O_S,k_x)=k$, множество классов нестабильных пучков составляют в D гладкий дивизор Υ , причем $\Upsilon\to g_0^{-1}(Y)$ — тройное накрытие.

Точки схемы Υ соответствуют классам изоморфных расширений вида $0 \to I_x \to E \to I_{Z_2} \to 0$, где $Z_2 \cup x$ содержится в одном слое f проекции $p:S \to P^1$, поэтому для $[E] \in \Upsilon$ выполняется $h^0(E(0,1))=2$. Тогда по теореме о полунепрерывности отсюда следует, что $\Upsilon \subset \Psi$, где $\Psi:=\{[E] \in X \mid h^0(E(0,1)) \geq 2\}$ — дивизор на X (геометрическое описание Ψ дано в [1]). Итак, мы получили следующий результат.

Теорема. 1) Для всех $x \in X \setminus (\Phi \cup \Upsilon)$ пучки $\mathbf{E} \mid S \times \{x\}$ H_{-} -стабильны.

2) Пусть $[E] \in M_-$ и E не является расширением вида $0 \to I_{Z_2} \to E \to I_y \to 0$, где Z_2 содержится в одном слое f проекции $p:S \to P^1$. Тогда для некоторой точки $x \in X$ $[\mathbf{E} \mid S \times \{x\}] = [E]$.

Гипотеза. Пусть $\rho_1: X_1 \to X$ – раздутие многообразия X вдоль Υ , $\rho_2: X_2 \to X_1$ – раздутие многообразия X_1 вдоль $\rho_1^{-1}(\Phi)_{prop}$. Тогда существует регулярный бирациональный морфизм

$$X_2 \rightarrow M_-$$

раскладывающийся в композицию трех стягиваний вдоль гладких дивизоров.

Библиографический список

1. Тихомиров, А. С., Сорокина, М. Е. О конструкции многообразия модулей стабильных пучков ранга два с классами Чженя $c_1 = 0$, $c_2 = 3$ на поверхности Хирцебруха F_1 (Часть I) [Текст] / А. С. Тихомиров, М. Е. Сорокина // Ярославский педагогический вестник. Естественные науки. − 2011. − Т. 3, № 4. − С. 7–14.