УДК 37.0

О. С. Егорова, Г. Г. Губина

Методика разработки и внедрения в учебный процесс в вузе электронных обучающих программ

В данной статье предлагается методика создания электронных программ на основе поэтапного подхода для обучения студентов вуза.

Ключевые слова: интерактивность, конструирование, контроль, обучение с помощью компьютера, поэтапный подход, электронная программа.

O. S. Egorova, G. G. Gubina

Method of Development and Implementation of Electronic Teaching Programmes in the Educational Process in University

In this paper we propose a method of creating electronic programmes based on a phased approach to teach students of the University.

Key words: interactivity, design, control, computer-based learning, a phased approach, e-learning programme.

Растущие потребности быстро изменяющегося современного информационного общества требуют развития и применения новых технологий во всех сферах жизнедеятельности, в том числе и в образовании, ориентированном сегодня на реализацию концепций компетентностного подхода и непрерывного обучения. Обмен информацией в мире осуществляется в глобальной информационной системе. Глобализация как поступательный процесс интеграции в области развития экономики, общества, культуры на основе всемирного сетевого обмена информацией, как соединение экономических, технологических, социокультурных, политических и биологических факторов обусловливает необходимость применения электронных технологий на всех этапах образовательного процесса в высшей школе [2, с. 43].

Кроме того, актуальность применения электронных технологий в высшей школе определяется переходом российских вузов на двухуровневую систему образования в соответствии с требованиями современного федерального государственного образовательного стандарта высшего профессионального образования и образовательных стандартов международного сообщества, а также необходимостью реализации компетентностного подхода в процессе обучения и формирования конкурентноспособных профессиона-

лов, отвечающих потребностям современного социума.

Несмотря на неослабевающий интерес исследователей к проблемам информатизации образования, приходится констатировать, что в современной педагогической и методической литературе еще недостаточное освещение получили многие теоретические и практические вопросы использования электронных технологий в учебном процессе, в частности, вопросы, связанные с разработкой электронных обучающих программ для студентов вуза.

Как показывает практика, использование электронных технологий в процессе обучения студентов вуза обладает рядом преимуществ, повышающих эффективность учебного процесса. Так, применение электронных технологий не только обеспечивает формирование компетенций обучаемых, но и предоставляет возможность комбинирования различных форм информации и адаптации электронного курса к личностным и индивидуальным особенностям учащихся, позволяет как преподавателю, так и студентам определять содержание и объем материала, обеспечивать интерактивную обратную связь между преподавателем и обучаемыми.

Одним из основных условий успешной реализации электронного обучения в вузе является, на наш взгляд, разработка качественных электрон-

[©] Егорова О. С., Губина Г. Г., 2012

ных программ, удовлетворяющих требованиям учебного процесса на всех этапах обучения, от обучения с помощью компьютера до интегрирования электронных программ в дистанционное обучение [7].

В данной статье предлагается методика разработки и внедрения в учебный процесс электронной обучающей программы на основе поэтапного подхода. Выбор поэтапного подхода обусловлен эффективностью его применения в разных областях науки и практики [1; 8]. Как известно, поэтапный подход представляет собой последовательное пошаговое выполнение поставленных целей и задач и включает в себя следующие компоненты: 1) инициацию и планирование; 2) проектирование и конструирование; 3) мониторинг и контроль. Рассмотрим данные этапы применительно к разработке электронной обучающей программы в вузе.

Первый этап работы над электронной программой — инициация и планирование — включает в себя: определение проблемы, целей и задач; выбор категории обучаемых (бакалавриат, магистратура, аспирантура); дидактическое прогнозирование процесса реализации электронной программы, ожидаемых результатов и эффективности ее работы; выбор технологического инструментария.

На втором этапе – проектировании и конструировании - определяются содержание прои технологии, оптимально представляющие это содержание. При этом содержание программы должно быть приоритетным. Содержание электронной программы, обеспечивающей реализацию электронного курса обучения, представлено в форме разделов и режимов работы, учебного обеспечивающих интерактивность процесса. Пользовательский интерфейс страниц программы определяется существующими стандартами в области интерактивных приложений, а также личными и индивидуальными особенностями обучаемых. Средства создания электронных программ включают в себя языки программирования, например, Assembler, HTML, C++, Visual Basic, а также средства разработки мультимедийных электронных документов (Adobe Autoware, GLO Maker, Xerte).

С целью повышения качества усвоения содержания электронной программы, и в частности, размещенной в ней текстовой информации, желательно включить в программу тексты, фрагментированные с точки зрения коммуникативного (актуального) синтаксиса [5; 6]. В процессе работы над текстом создаются подзаголовки, списки, используется табуляция. Необходимо учитывать комбинирование цвета и фона размещения информации, обеспечивающее четкость восприятия содержания материала и объема информации на странице, а также правильно осуществлять подбор и размер шрифтов.

Графическая информация может быть представлена в виде иллюстраций к текстовому материалу, миниатюр, уменьшенных версий изображений, пиктограмм (значков), условно изображающих некоторый объект. Использование пиктограмм на всех страницах программы должно иметь единое целевое оформление. Кроме того, в программе может быть представлено анимированное изображение на основе GIF или технологии Macromedia Flesh. Видео должно иметь непосредственную связь с содержанием отображаемого учебного материала.

Электронная программа предполагает также использование звукового сопровождения. Асинхронное звуковое сопровождение не имеет непосредственной связи с отображаемым на экране материалом. В этом случае звук создает эмоциональный фон для обучаемого. Синхронный звук является частью содержания материала или сопровождает интерактивные действия студента, например, при переключении ссылок в программе.

На третьем этапе выполнения программы осуществляются мониторинг и контроль уровня подготовленности студентов, оценка эффективности работы программы.

С целью контроля материала можно использовать разные виды тестов: Multiple Choice - выбор одного варианта из нескольких предложенных вариантов ответов; Multiple Response - выбор всех правильных вариантов из числа предложенных в ответе; Multiple Response with Multiple Image Hot Spot Rendering - указание на графических объектах определенных элементов с мощью мыши; Fill-in-Blank – введение недостающего элемента в текстовую или числовую свободную позицию; Short Answer – ответ в свободной форме с использованием ключевых слов; Ordering Objects – упорядочение объектов по определенному признаку; Connect-the-Points - построение из графических объектов более сложного объекта; Drag-and-drop – перемещение предъявленных объектов в соответствии с некоторым правилом [4, с. 360-361].

Критерии оценки, определяющие эффективность работы программы, должны включать в

себя не только результаты тестовых заданий, но и показатели времени подготовки ответа и выполнения задания, исправления допущенной ошибки, поиска и применения дополнительной информации, а также показатели процента правильных ответов.

По завершении конструирования осуществляются компиляция, отладка и апробация электронной программы, а также определяется эффективность ее использования.

В качестве примера приведем описание разработанных и внедренных нами в учебный процесс электронных обучающих программ Learn Computer English, Learn Computer English 2, Learn Computer English 3 [3, c. 37-42].

Данные электронные программы представляют собой сложные мультимедийные полифункциональные произведения, обеспечивающие обучение всем видам речевой деятельности: аудированию, чтению, устной и письменной речи, а также фонематическому и лексикограмматическому аспектам.

В процессе проектирования электронных программ нами были определены следующие цели обучения: 1) овладение методами электронного обучения и работы с электронной информацией; 2) формирование коммуникативной компетенции студентов; 3) подготовка специалистов, способных использовать иностранный язык в профессиональной, производственной и научной деятельности, например, в процессе разработки исследовательских проектов, электронных учебнометодических материалов, при написании научных публикаций на иностранном языке и т.п.

Разработанные нами электронные программы могут использоваться на всех этапах обучения в вузе: бакалавриат, магистратура, аспирантура.

Например, электронные обучающие программы Learn Computer English и Learn Computer English 2 предназначены для обучения студентов I-II курсов физико-математического факультета.

Схема доступа к обучению: клиент ↔ сервер ↔ база данных. Серверная часть системы обучения включает систему управления электронным обучением и состоит из подсистемы регистрации студентов, а также подсистем маршрутизации и формирования отчета, обеспечивающих 1) регистрацию студентов и свободный доступ к электронным ресурсам, определяющим образовательную среду обучаемых; 2) обработку текущего подключения; 3) управление работой студента в разделах и режимах работы; 4) получение преподавателем и администратором сведений о дос-

тигнутых результатах и оценках в процессе работы обучаемых. Клиентская часть системы обучения включает в себя подсистемы обучения и диагностирования. Главная страница и учебные страницы созданы с помощью программ для разработчиков Web-страниц [8].

В рассматриваемых нами программах использованы языки программирования С ++ и Assembler. Навигационная система обеспечивает осознанное восприятие и переработку содержащейся в программе информации, а также способов ее использования. На первой, главной странице (Main page) представлена структура курса полный перечень разделов и режимов работы, позволяющий пользователю осуществлять интерактивную связь со всеми страницами программы. Содержание обучения спроектировано с использованием аутентичных материалов для обучения общему и специализированному языку. В программы включены справочные материалы, которые содержат грамматические справочники, общие и специализированные словари, аудиокурсы, инструкции к работе студентов.

Для обеспечения навигации на следующих страницах электронных программ имеются элементы переключения — ссылки на главную страницу: *next* — следующая страница, *back* — назад, *home* — начало обучения.

Подсистема диагностирования определяет процедуру регистрации пользователя (Login), диагностирование результатов работы и подсчет результатов обучения (Scoring). В процессе диагностирования результатов работы студентов в программе использованы четыре вида тестов: Fill-in-Blank — свободный ввод с клавиатуры больших информационных блоков, Short Answer — ввод свободно конструируемого ответа по ключевым словам, Single Choice Question — выбор «один из многих», Ordering Objects — упорядочивание объектов [2, с. 43-46]. Подсчет результатов обучения предназначен для определения итоговой оценки группы тестов и формирования отчета.

Что касается электронной обучающей программы Learn Computer English3, она предназначена для магистрантов и аспирантов университета всех специальностей. Методическая значимость и новизна данной программы заключаются в том, она разработана на основе стратегий послевузовского изучения иностранного языка в магистратуре и аспирантуре с учётом современных стандартов модульно-компетентностного подхода в процессе формирования будущих спе-

циалистов. Программа позволяет также овладеть методикой самостоятельной работы в процессе послевузовского обучения иностранному языку.

При разработке программы использована технология от компании Microsoft .NET Framework 4.0. Среда разработки .NET-приложения — Microsoft Visual Studio. В отличие от рассмотренных выше электронных программ Learn Computer English и Learn Computer English 2, в данной программе схема доступа к обучению другая: клиент \leftrightarrow база данных. Программа обеспечивает регистрацию учащихся, маршрутизацию, диагностику результатов обучения.

Результаты работы студентов показывают положительную динамику формирования компетенций в процессе изучения дисциплины «иностранный язык» в вузе, что нашло отражение в результатах проверки качества знаний и умений обучаемых в процессе выполнения ими упражнений и тестов, в реализованных учащимися программных продуктах, таких как аудио- и видеоматериалы, учебно-методические и научные материалы к семинарам и конференциям на английском языке.

В заключение отметим, что использование электронных программ в вузе способствует повышению эффективности учебного процесса, активизирует деятельность студентов, обеспечивает индивидуализацию процесса обучения, позволяет реализовать интерактивное разноуровневое обучение в вузе, то есть, более гибко определять методы обучения, содержание учебного материала, формы контроля учебного процесса в соответствии с поставленными целями и задачами обучения и уровнем подготовленности учащихся. Кроме того, электронные обучающие программы могут успешно использоваться в дистанционном обучении в вузе.

Библиографический список:

- 1. Архипенков, С. Лекции по управлению программными проектами [Текст] / С. Архипенков. М., $2009-128\ c.$
- 2. Губина, Г. Г. Применение мультимедийных технологий как инновационной формы обучения профессионально ориентированному английскому языку в вузе в условиях глобализации [Текст] / Г. Г. Губина // Современные модели в преподавании иностранных языков и культур в контексте менеджмента качества образования: Сборник материалов IV Всероссийской (с международным участием) конференции, Том II. М.: РГСУ, 2010. С. 43–46.
- 3. Губина, Г. Г. Внедрение и реализация электронной системы обучения студентов вуза иностранному языку на информационно-технологическом факультете [Текст] / Г. Г. Губина // Межкультурная коммуникация и СМИ: Материалы II международной научнопрактической конференции. Барнаул: Алт. университет, 2010. С. 37–42.
- 4. Гультяев, А. К. Macromedia Authorware 6.0. Разработка мультимедийных учебных курсов [Текст] / А. К. Гультяев. М.: Издательство КОРОНА ПРИНТ, 2007–400 с.
- 5. Егорова, О. С. Некоторые аспекты актуального синтаксиса французского языка [Текст] / О. С. Егорова // Язык. Культура. Образование. Вып. IV. Ярославль: Изд-во ЯГПУ им. К. Д. Ушинского, 2008. С. 5–17.
- 6. Егорова, О.С. Основные типы высказывания в современном французском языке [Текст] / О.С. Егорова Ярославль: Изд-во ЯГПУ им. К.Д. Ушинского, 1999. 128 с.
- 7. Егорова, О. С., Губина, Г. Г. Теоретикометодические вопросы дистанционного обучения студентов [Текст] / О. С. Егорова, Г. Г. Губина // Ярославский педагогический вестник. Психологопедагогические науки: научный журнал. Ярославль, Изд-во ЯГПУ, 2012. № 3. Том II. С. 200–202.
- 8. Левин, М. П., Алексеев, Ю. М. Самоучитель разработки Web-сайтов: HTML, CSS, графика, анимация, раскрутка [Текст] / М.П. Левин, Ю.М. Алексеев М.: Изд-во «Триумф», 2008-400 с.