УДК 512.7

А. Д. Уваров

Геометрия схемы модулей стабильных пучков ранга 2 с малыми классами Черна на трехмерной квадрике

В этой статье изучается геометрия схемы модулей Гизекера-Маруямы полустабильных пучков ранга 2 с классами Черна $c_1 = -1, c_2 = 2, c_3 = 0$ на гладкой трехмерной проективной квадрике Q. Мы приводим геометрическое описание компонент этой схемы

Ключевые слова: трехмерная квадрика, стабильный когерентный пучок, монада, схема модулей.

A. D. Uvarov

Geometry of the scheme of moduli of stable rank 2 sheaves with small Chern's classes on a three-dimensional quadric

In this article we study the geometry of the Gieseker-Maruyama moduli scheme of semistable sheaves of the rank 2 with Chern classes $c_1 = -1, c_2 = 2, c_3 = 0$ on a smooth three-dimensional projective quadric. We give a geometric description of the components of this scheme.

Keywords: a three-dimensional quadric, a stable coherent sheaf, monad, a moduli scheme.

В настоящей статье дается геометрическое описание многообразия $M_Q(2;-1,2,0)$ модулей полустабильных не локально свободных пучков ранга 2 с малыми классами Черна $c_1 = -1, c_2 = 2, c_3 = 0$ на гладкой трехмерной проективной квадрике Q над алгебраически замкнутым полем \mathbf{k} характеристики 0.

В статье [1] автором было показано, что:

- (i) $M_{\mathcal{Q}}(2;-1,2,0)=\overline{M_{\mathcal{Q}}(-1,2)}\cup M'$, где $\overline{M_{\mathcal{Q}}(-1,2)}$ замыкание в $M_{\mathcal{Q}}(2;-1,2,0)$ многообразия $M_{\mathcal{Q}}(-1,2)$ модулей расслоений ранга 2, а M' многообразие модулей не локально свободных пучков из $M_{\mathcal{Q}}(2;-1,2,0)$;
 - (ii) всякий пучок $[\mathcal{E}] \in \overline{M_{\mathcal{Q}}(-1,2)}$ является когомологией монады

$$0 \to \mathcal{O}_{Q}(-1) \to \mathbf{k}^{2} \otimes \mathcal{S} \xrightarrow{\varepsilon} \mathcal{O}_{Q} \to 0, \tag{1}$$

где S — спинорное расслоение на Q;

(iii) всякий пучок $[\mathcal{E}] \in M' \setminus (M' \cap \overline{M_{\varrho}(1,2)})$ является когомологией монады

$$0 \to \mathcal{O}_{\alpha}(-2) \xrightarrow{\alpha} 3\mathcal{O}_{\alpha}(-1) \xrightarrow{\beta} \mathcal{O}_{\nu} \to 0 \tag{2}$$

где y — точка на Q .

Пусть $W = H^0(Q, \mathcal{S}^{\vee})^{\vee}$, G = Gr(2, W), и $\mathcal{U} \to W^{\vee} \otimes \mathcal{O}_G$ — тавтологическое расслоение на грассманиане G, $V = H^0(\mathcal{O}_Q(1))^{\vee}$, $\dim V = 5$, F(1, 4, V) и F(2, 4, V) — многообразие флагов.

Как известно, P(W) отождествляется с базой семейства прямых на Q. Поэтому определено отображение нуль-корреляции $\omega: P(W) \to P(W^\vee)$ следующим образом: всякой прямой $l \subset Q$ как точке в P(W) ставится в соответствие плоскость $\mathbb{P}_2 \subset P(W)$, точкам которой отвечают прямые в Q, пересекающие l. Нуль-корреляция ω определяет однозначно с точностью до пропорциональности симплектическую форму $\tilde{\omega} \in \Lambda^2 W^\vee$ и, тем самым, гиперплоскость $H_\omega \subset P(\Lambda^2 W)$, пересекающую грассманиан G по квадрике изотропных прямых нуль-корреляции. Эта квадрика естественным образом отождествляется с Q: каждой изотропной прямой нуль-корреляции ω отвечает точка в Q пересече-

_

[©] Уваров А. Д., 2013

ния прямых, соответствующих точкам данной изотропной прямой. Таким образом, имеем каноническое вложение $Q \to Gr(2,W)$, и нетрудно видеть, что ограничение $\mathcal U$ на Q изоморфно $\mathcal S$.

Основным результатом статьи является следующая теорема:

(i)
$$M' = Q \times_{P(V)} F(1,4,V) \times_{P(V^{\vee})} F(2,4,V)$$
;

(ii) имеет место изоморфизм приведенных схем: $\overline{M_{\mathcal{Q}}(-1,2)} \simeq \mathbf{P}(S^2\mathcal{U})$;

(iii)
$$\overline{M_o(-1,2)} \setminus M_o(-1,2) \simeq \mathbf{P}(S^2 \mathcal{S})$$
.

Доказательство:

Докажем утверждение (і) теоремы.

Морфизм α в монаде (2) задается двумерным подпространством $A_2 \subset V$ как композиция морфизмов $\mathcal{O}_O(-2) \to V \otimes \mathcal{O}_O(-1) \to (V / A_2) \otimes \mathcal{O}_O(-1)$.

Морфизм β задается сюръекцией $\beta_y:V/A_2\to \mathbf{k}$. Композиция сюръекций $V\to V_5/A_2\to \mathbf{k}$ вместе с тройкой $0\to A_2\to V\to V/A_2\to 0$ показывает, что ядро композиции $V\to V/A_2\to \mathbf{k}$ есть четырехмерное пространство V_4 , содержащее A_2 . Таким образом, пара (A_2,V_4) является точкой многообразия флагов Fl(2,4,V). Теперь запишем условие того, что композиция $\beta^\circ\alpha$ в монаде (2) равна 0. Ограничение морфизма α на точку $y\in Q$ есть композиция $\alpha_y:\mathbf{k}\to V\to V/A_2$, и условие $\beta^\circ\alpha=0$ равносильно условию $\beta_y{}^\circ\alpha_y=0$, из которого следует, что $\alpha_y(\mathbf{k})\subset V_4$. Другими словами, пару (\mathbf{k},V_4) можно рассматривать как точку многообразия флагов F(1,4,V). Тем самым, данные $(\mathbf{k}_y\subset V_4\supset V_2)$, где $y\in Q$, можно рассматривать как точку из расслоенного произведения $Q\times_{P(V)}F(1,4,V)\times_{P(V)}F(2,4,V)$.

Теперь докажем утверждение (ii) теоремы. Сначала покажем, что сюръективные морфизмы ε параметризуются схемой $G \setminus Q$. Пусть Q — гиперплоское сечение грассманиана G, задаваемое симплектической формой $\tilde{\omega} \in \Lambda^2 W^\vee$. По посторению, спинорное расслоение \mathcal{S} на Q есть ограничение \mathcal{U} на Q. Рассмотрим морфизм подрасслоения $\varepsilon^\vee: \mathcal{O}_Q \to (\mathbf{k}^2)^\vee \otimes \mathcal{S}^\vee$, двойственный к морфизму ε из монады (1). Морфизм ε^\vee можно рассматривать как сечение ${}^\sharp \varepsilon \in H^0((\mathbf{k}^2)^\vee \otimes \mathcal{S}^\vee) = (\mathbf{k}^2)^\vee \otimes W^\vee$. Рассмотрим универсальную тройку на грассманиане $G: 0 \to \mathcal{U} \to W^\vee \otimes \mathcal{O}_G \to Q \to 0$, ее ограничение на Q:

$$0 \to \mathcal{S} \xrightarrow{\gamma} W \otimes \mathcal{O}_o \stackrel{\bar{o}}{\simeq} W^{\vee} \otimes \mathcal{O}_o \xrightarrow{\gamma^{\vee}} \mathcal{S}^{\vee} \to 0,$$

и индуцированный эпиморфизм

$$\tilde{\gamma}: (\mathbf{k}^2)^{\vee} \otimes W^{\vee} \otimes \mathcal{O}_O \twoheadrightarrow (\mathbf{k}^2)^{\vee} \otimes \mathcal{S}^{\vee}.$$

По построению

$$\varepsilon^{\vee} = \tilde{\gamma}(^{\dagger}\varepsilon \otimes \mathcal{O}_{o}). \tag{3}$$

Рассмотрим ограничение морфизма $\tilde{\gamma}$ на точку $y \in Q$: $\tilde{\gamma}_{\gamma}$: Hom(\mathbf{k}^2, W^{\vee}) woheadrightarrow Hom($\mathbf{k}^2, \mathcal{S}_{\gamma}^{\vee}$).

Пусть $^{\sharp}\varepsilon:\mathbf{k}^{2}\to W^{\vee}$ — вложение. Покажем, что условие $\tilde{\gamma}_{y}(^{\sharp}\varepsilon)=0$ равносильно изотропности подпространства $\tilde{\omega}^{-1}(^{\sharp}\varepsilon(\mathbf{k}^{2}))\subset W$ относительно симплектической формы $\tilde{\omega}$. Действительно, пусть $^{\sharp}\varepsilon(\mathbf{k}^{2})=\tilde{\omega}(i_{y}(\mathcal{S}_{y}))$, где $i_{y}(\mathcal{S}_{y})$ — изотропное подпространство в W, а $i_{y}:\mathcal{S}_{y}\to W$ — тавтологическое вложение. Тогда $\tilde{\gamma}_{y}(^{\sharp}\varepsilon(\mathbf{k}^{2}))=i_{y}^{\vee}(^{\sharp}\varepsilon(\mathbf{k}^{2}))=i_{y}^{\vee}(\tilde{\omega}(i_{y}(\mathcal{S}_{y})))=0$, то есть $^{\sharp}\varepsilon(\mathbf{k}^{2})\subset\ker i_{y}^{\vee}$. Тем самым, $\tilde{\omega}^{-1}(^{\sharp}\varepsilon(\mathbf{k}^{2}))$ — двумерное изотропное подпространство в W, по построению равное $i_{y}(\mathcal{S}_{y})$. Поэтому сюръективные морфизмы ε в монаде (1) параметризуются схемой $G \setminus Q$. Кроме того, для $y \in Q$

$$\operatorname{coker} \varepsilon = \mathbf{k}_{v}. \tag{4}$$

28 А. Д. Уваров

Покажем, что монада (1) имеет вид:

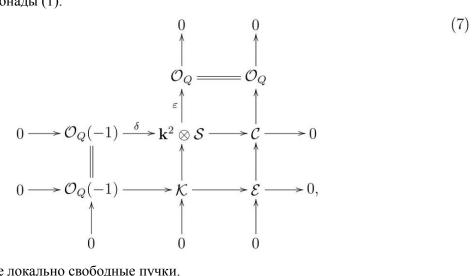
$$0 \to \mathcal{O}_{O}(-1) \xrightarrow{\delta} \mathbf{k}^{2} \otimes \mathcal{S} \stackrel{q}{\simeq} (\mathbf{k}^{2})^{\vee} \otimes \mathcal{S}^{\vee}(-1) \xrightarrow{\delta^{\vee}} \mathcal{O}_{O} \to 0, \tag{5}$$

где

$$q \in H^0(\wedge^2(\mathbf{k}^2 \otimes \mathcal{S})^{\vee}(-1)), \tag{6}$$

и $\varepsilon = \delta^{\vee} \circ q$.

Запишем дисплей монады (1):



где \mathcal{K} и \mathcal{C} – некоторые локально свободные пучки.

Нижнее расширение в диаграмме (7) задается ненулевым элементом $\xi \in H^1(\mathcal{E})$, т. к. $\operatorname{Ext}^1(\mathcal{E},\mathcal{O}_{\scriptscriptstyle O}(-1)) = H^1(\mathcal{H}om(\mathcal{E},\mathcal{O}_{\scriptscriptstyle O}(-1))) = H^1(\mathcal{E})$. Из тройки $0 \to \mathcal{O}_{\scriptscriptstyle O}(-1) \to \mathcal{E} \to \mathcal{I}_{\scriptscriptstyle L\sqcup l_2} \to 0$, где l_1 и l_2 некоторые скрещивающиеся прямые в Q, следует, что $h^1(\mathcal{E})=1$. Тем самым, пучок \mathcal{E} полностью определяет нижнюю тройку в диаграмме (7) однозначно с точностью до изоморфизма. Кроме того, из этой тройки получаем: $h^1(\mathcal{K}) = h^1(\mathcal{E}) = 1$. Далее, средняя вертикальная тройка в (7) задается ненулевым элементом ζ в группе $Ext^1(\mathcal{K}, \mathcal{O}_{\mathcal{O}}(-1)) = H^1(\mathcal{H}om(\mathcal{K}, \mathcal{O}_{\mathcal{O}}(-1))) = H^1(\mathcal{K}) = \mathbf{k}$. Таким образом, дисплей монады (1) однозначно определяется (с точностью до изоморфизма) расслоением ${\mathcal E}$.

Двойственная к (7) диаграмма, тензорно умноженная на $\mathcal{O}_{o}(-1)$, изоморфна исходному дисплею в силу канонического кососимметрического изоморфизма $\tilde{\mathcal{E}} \to \tilde{\mathcal{E}}^{\vee}(-1)$. В частности, изоморфизм $q = q(\mathcal{E})$: $\mathbf{k}^2 \otimes \tilde{\mathcal{E}} \to (\mathbf{k}^2 \otimes \mathcal{E})^{\vee}$ (-1), также является кососимметрическим, то есть верны равенство (6) и соотношение $\varepsilon = \varepsilon(\mathcal{E}) = \delta^{\vee \circ} q$. Тем самым, доказано (5).

Теперь покажем что

$$q = q(\mathcal{E}) = \psi(\mathcal{E}) \otimes \varphi, \tag{8}$$

где $\varphi: \mathcal{S} \to \mathcal{S}^{\vee}(-1)$ — стандартный кососимметрический изоморфизм, а $\psi(\mathcal{E}) \in S^2(\mathbf{k}^2)^{\vee}$.

Как известно [2. с. 191], S является стабильным расслоением, а, следовательно, простым: $\dim Hom(\mathcal{S},\mathcal{S})=1$. Пользуясь последним равенством и тем, что

 $Hom(\mathcal{S},\mathcal{S}) = H^{0}(\mathcal{H}om(\mathcal{S},\mathcal{S})) = H^{0}((S^{\vee} \otimes \mathcal{S})^{\vee}(-1)) = H^{0}(S^{2}\mathcal{S}^{\vee}(-1)) \oplus H^{0}(\wedge^{2}\mathcal{S}^{\vee}(-1)) = H^{0}(S^{2}\mathcal{S}^{\vee}(-1)) \oplus H^{0}(\mathcal{O}_{O})$ получаем, что $h^0(S^2S^{\vee}(-1))=0$, поскольку $h^0(\mathcal{O}_{\Omega})=1$. Из равенства (6) следует, что $q \in H^0((S^2(\mathbf{k}^2)^{\vee} \otimes \wedge^2 \mathcal{S}^{\vee} \oplus \wedge^2 (\mathbf{k}^2)^{\vee} \otimes S^2(\mathcal{S}^{\vee}))(-1)) = S^2(\mathbf{k}^2)^{\vee} \otimes H^0(\wedge^2 (\mathcal{S}^{\vee})(-1)) \oplus \wedge^2 (\mathbf{k}^2)^{\vee} \otimes H^0(S^2(\mathcal{S}^{\vee})(-1)) = S^2(\mathbf{k}^2)^{\vee} \otimes H^0(\mathcal{O}_{\Omega}). \quad \text{Tem } \mathbf{ca-}$ мым, верна формула (8).

Далее, построим изоморфизм

$$f: M_{\mathcal{Q}}(-1,2) \xrightarrow{\sim} \mathbf{P}(S^2 \mathcal{U}|_{G \setminus \mathcal{Q}}).$$
 (9)

B самом деле, $\mathbf{P}(S^2\mathcal{U}|_{G\diagdown\mathcal{Q}}) = \{(\mathbf{k}^2 \subset W^{\vee}, [\psi]) \mid (\mathbf{k}^2 \subset W^{\vee}) \in G \diagdown \mathcal{Q}, \psi \in S^2 \mathbf{k}^2 \}$.

Зададим морфизм f формулой:

$$f([\mathcal{E}]) = ({}^{\sharp}\varepsilon(\mathcal{E}) : \mathbf{k}^2 \to W^{\vee}, \psi(\mathcal{E})). \tag{10}$$

Обратный морфизм f^{-1} сопоставляет паре $({}^{\sharp}\varepsilon:\mathbf{k}^2\to W^{\vee},[\psi])\in \mathbf{P}(S^2\mathcal{U}|_{G^{\vee}\mathcal{Q}})$ класс $[\mathcal{E}]$ когомологического пучка монады (5), в которой $q=\psi\otimes \varphi$, а $\delta=q^{-1}\circ \varepsilon^{\vee}$.

Теперь продолжим изоморфизм (9) до изоморфизма

$$\overline{M_o(-1,2)} \simeq \mathbf{P}(S^2 \mathcal{U}). \tag{11}$$

Пусть $M := \mathbf{P}(S^2\mathcal{U})$ и $g: M \to G$ — структурный морфизм. Согласно (9) имеем изоморфизм $f: M_{\mathcal{O}}(-1,2) \xrightarrow{\sim} M \setminus g^{-1}(\mathcal{Q})$. Релятивизируем монаду (1) на $\mathcal{Q} \times M$:

$$0 \to \mathcal{O}_o(-1) \boxtimes \mathcal{L} \xrightarrow{\tilde{\varepsilon}^{\vee}} \mathcal{S} \boxtimes \mathcal{U} \xrightarrow{\tilde{\varepsilon}} \mathcal{O}_o \boxtimes \mathcal{M} \to \mathcal{C} \to 0, \tag{12}$$

где \mathcal{L} и \mathcal{M} – некоторые обратимые пучки на M . По конструкции, $\operatorname{Supp}(\mathcal{C})$ есть сечение проекции $pr_2: Q \times g^{-1}(Q) \to g^{-1}(Q)$. Заметим, что для любой точки $t \in g^{-1}(Q)$ имеет место равенство $\operatorname{Supp}(\mathcal{C}) \cap Q \times \{t\} = \{(y,t)\}$, где y – некоторая точка на квадрике Q . Кроме того, из (4) следует, что $\mathcal{C}|_{Q \times \{t\}} = \mathbf{k}_{(y,t)}$. Таким образом, $\operatorname{Supp}(\mathcal{C})$ – гладкая схема, изоморфная $g^{-1}(Q)$, а \mathcal{C} – обратимый пучок на $\operatorname{Supp}(\mathcal{C})$. Тем самым, обозначая $Q_t := Q \times \{t\}, t \in M$, простым локальным вычислением находим

$$Tor_i(\mathcal{C}, \mathcal{O}_{O_i}) = 0, i > 0.$$
(13)

Теперь покажем, что когомологический пучок $\mathbb E$ комплекса (12) является плоским над M пучок. Для этого докажем, что $Tor_1(\mathbb E,\mathcal O_{O_t})=0$ для любого $t\in M$.

В силу локальной свободы пучков \mathcal{A}, \mathcal{B} и \mathcal{H} верны следующие равенства

$$Tor_i(A) = Tor_i(B) = Tor_i(H) = 0, i > 0.$$
 (14)

Разрежем последовательность $0 \to \mathbb{E} \to \mathcal{F} \to \mathcal{H} \to \mathcal{C} \to 0$ на две коротких точных тройки: $0 \to \mathbb{E} \to \mathcal{F} \to \mathcal{D} \to 0$ и $0 \to \mathcal{D} \to \mathcal{H} \to \mathcal{C} \to 0$. Применим функтор $Tor_i(\cdot)$ к последней тройке и выпишем кусок длинной точной последовательности Tor -ов: $Tor_3(\mathcal{C}) \to Tor_2(\mathcal{D}) \to Tor_2(\mathcal{H})$. Отсюда с учетом равенства $Tor_3(\mathcal{C}) = Tor_2(\mathcal{H}) = 0$ (см. (13) и (14)) получим, что $Tor_2(\mathcal{D}) = 0$. Применим функтор $Tor_i(\cdot)$ к тройке $0 \to \mathbb{E} \to \mathcal{F} \to \mathcal{D} \to 0$ и запишем кусок длинной точной последовательности Tor -ов: $Tor_2(\mathcal{D}) \to Tor_1(\mathbb{E}) \to Tor_1(\mathcal{F})$. Из этой тройки в силу доказанных выше равенств $Tor_2(\mathcal{D}) = Tor_1(\mathcal{F}) = 0$ следует, что $Tor_1(\mathbb{E}) = 0$. Тем самым, \mathbb{E} – плоский пучок над M.

Рассмотрим модулярный морфизм $\Phi: M \to M_O(2; -1, 2, 0), t \mapsto [\mathbb{E}|_{O}]$.

По определению $\Phi|_{\mathbf{P}(S^2\mathcal{U}|_{G\smallsetminus\mathcal{Q}})}$ совпадает с описанным ранее морфизмом $f^{-1}:\mathbf{P}(S^2\mathcal{U}|_{G\smallsetminus\mathcal{Q}})\to M_\mathcal{Q}(-1,2)$. Из описания морфизма f^{-1} следует, что он определен на всем $\mathbf{P}(S^2\mathcal{U})$, при этом монада (5) видоизменяется при $t\in g^{-1}(Q)$ в комплекс (12), ограниченный на Q_t . Соответственно, морфизм f, определенный

30 А. Д. Уваров

формулой (10), продолжается до морфизма $\Phi^{-1}:\overline{M_{\mathcal{Q}}(-1,2)}\to \mathbf{P}(S^2\mathcal{U})$, задаваемого той же формулой (10). (Здесь $\overline{M_{\mathcal{Q}}(-1,2)}$ понимается как приведенная схема.) Следовательно, Φ – замкнутое вложение и $\Phi(\mathbf{P}(S^2\mathcal{U}))=\overline{M_{\mathcal{Q}}(-1,2)}$. Отсюда вытекает утверждение (ii).

Утверждение (iii) следует из (9) и (11).

Замечание. Можно показать, что биекция в утверждении (і) является изоморфизмом гладких схем.

Библиографический список

- 1. Уваров, А. Д. Модули стабильных пучков ранга 2 с классами Черна $c_1 = -1$, $c_2 = 2$, $c_3 = 0$ на трехмерной квадрике [Текст] / А. Д. Уваров // Моделирование и анализ информационных систем, т. 19. − 2012. − №2. − С. 19−40.
- 2. Ottaviani J., Szurek M. On moduli of stable 2-bundles with small chern classes on Q_3 [Tekct]: Annali di Matematica Pura ed Applicata. 1994. CLXVII c.191–241.

Bibliograficheskij spisok

- 1. Uvarov, A. D. Moduli stabil'nyh puchkov ranga 2 s klassami Cherna $c_1 = -1$, $c_2 = 2$, $c_3 = 0$ na trehmernoj kvadrike [Tekst] / A. D. Uvarov // Modelirovanie i analiz informacionnyh sistem, t. 19. 2012. \mathbb{N}^2 . S. 19–40.
- 2. Ottaviani J., Szurek M. On moduli of stable 2-bundles with small chern classes on Q_3 [Tekst]: Annali di Matematica Pura ed Applicata. 1994. CLXVII c.191–241.