УДК 547.057-7/.8

Л. А. Шумилова, М. К. Корсаков, М. В. Дорогов, М. В. Блюмина

Синтез новых бифункциональных двуядерных изоксазолсодержащих молекулярных систем

Разработан метод синтеза новых двуядерных изоксазолсодержащих молекулярных систем, содержащих одновременно две функциональные группы – карбоксамидную и сульфониламидную. Изучены особенности реакции сульфонилхлорирования этих систем.

Ключевые слова: Изоксазолы, сульфонилхлорирование, электрофильное замещение, сульфониламиды, карбоксамиды, изоксазол карбоновые кислоты, циклоконденсация, нуклеофильное замещение, амидирование, конденсация Кляйзена, 1,3дикетоны, бифункциональные системы.

L. A. Shumilova, M. K. Korsakov, M. V. Dorogov, M. V. Bljumina

Preparation of new dual-ring bifunctional substances comprising isoxazole moiety

We have developed a method to prepare the new substances comprising isoxazole ring and two functional groups - carboxamide and sulfonyl amide. Sulfonyl chlorination reaction of these systems was also studied.

Keywords: isoxazole, sulfonyl chlorination, electrophilic substitution, sulfonyl amide, carboxamide, isoxazolecarboxylic acid, cyclocondensation, nucleophilic substitution, amidation, claisen condensation, 1,3-diketones, a bifunctional system

Для поиска новых биоактивных веществ был разработан метод получения бифункциональных двуядерных изоксазолсодержащих соединений путем многостадийного синтеза карбоксамидного структурного блока, с последующей его трансформацией в целевые сульфониламиды.

Методом сложноэфирной конденсации с диметилоксалатом в присутствии гидрида натрия из ряда ацетиларенов и ацетилгетериленов 1 были получены соответствующие дикарбонильные соединения 2 (схема 1). При их взаимодействии с солянокислым гидроксиламином были синтезированы метиловые эфиры 3-изоксазолкарбоновой кислоты 3. Циклоконденсация в данном случае приводит к образованию изоксазольного цикла *in situ*, благодаря кислотному катализу высвобождающимся хлороводородом.

Несмотря на несимметричность исходного амбидентного субстрата, реакция региоспецифична. Объяснение этого факта, по-видимому, заключается в сильном электроноакцепторном влиянии на электрофильный центр карбоксильной группы. Второй электрофильный центр связан с арилом, которые не склонны к значительным электроноакцепторным эффектам и обычно взаимодействуют с остальной частью молекулы по механизму π сопряжения или реализуют слабую поляризацию π -системы. Таким образом, реакционный центр при карбоксильной группе должен быть более реакционноспособным при взаимодействии с нуклеофилом, что и наблюдается. Кроме того, в результате стабилизации енольной формы реакционного центра при фениле увеличивается реакционная способность электрофильного центра при карбоксамидной группе.

Расположение связи N-O в изоксазольном цикле было подтверждено методом термической рециклизации изоксазолкарбоновых кислот 4, полученных щелочным гидролизом соответствующих эфиров 3. Из изоксазолкарбоновых кислот 4 были получены соответствующие карбоксамидные производные 5, 6. Синтез амидов проводили in situ из хлорангидридов, образованных под действием тионилхлорида, с последующим амидированием алифатическими аминами в присутствии пиридина.

Синтез новых бифункциональных двуядерных изоксазолсодержащих молекулярных систем

[©] Шумилова Л. А., Корсаков М. К., Дорогов М. В., Блюмина М. В., 2013

Функционализацию полученных соединений 5, 6 осуществляли введением хлорсульфонильной группы реакцией сульфохлорирования в избытке хлорсульфоновой кислоты в присутствии тионилхлорида для смещения равновесия реакции.

Положение электрофильного замещения в двуядерной ароматической системе соединений **5**, **6** определяется взаимным влиянием электроноакцепнорного изоксазолкарбоксамидного фрагмента и связанного с ним электрононасыщенных фенильного цикла. Было установлено, что изоксазол, несмотря на электроноакцепторный характер, проявляет себя как пара-ориентант. Очевидно, это связано со стабилизацией σ -комплекса в параположении к изоксазолу, за счет образования резонансной структуры с локализацией положительного заряда на атоме кислорода. Так, региоспецифично были получены сульфонилхлориды **7**, **9**, а на их основе – комбинаторные ряды сульфонамидных структурных аналогов **8а-с**, **10а-с** с рядом аминов разнообразного строения (схемы 2, 3). Строение соединений **7**, **8** было подтверждено методом спектроскопии ЯМР.

В случае, когда пара-положение к изоксазолу недоступно для замещения, положение электрофильной атаки определяется совокупностью ориентирующего влияния заместителя в этом положении и электроноакцепторных свойств изоксазолкарбоксамидного фрагмента. При сульфохлорировании соединений 6 были региоспецифично получены продукты замещения в орто-положение к метоксигруппе 9 (схема 3). Их строение подтверждено наличием на ЯМР 1H-спектрах 9 сигналов ABXсистемы взаимодействия протонов.

Схема 3

Эксперементальная часть

Чистоту полученных соединений контролировали методом тонкослойной хроматографии (TCX) на силикагеле на алюминевых пластинках Silufol 254 UV с использованием в зависимости от объектов различные элюенты.

ЖХ-МС анализ проводили на приборе AppliedBiosystems (Shimadzu 10-AV LC, Gilson-215 автоматическая подача образца, масс-спектрометр API 150EX, детекторы UV (215 и 254 нм) и ELS, колонка Luna-C18, Phenomenex, 5 см * 2 мм).

Спектры 1Н ЯМР растворов образцов в ДМСО-D6 и CDCl3 записаны на спектрометре «Bruker MSL-300». Спектры 13С ЯМР и двухмерные корреляционные 1H-1H ЯМР NOESY растворов образцов в ДМСО-D6 и CDCl3 записаны на приборе Varian XL-400.

Элементный анализ был выполнен в Лаборатории органического микроанализа ИОХ РАН.

Температуры плавления определены с помощью прибора BuchiMeltingPoint M-560.

Соединения 2-6 были синтезированы по известным методикам [1, 2, 3].

Общая методика синтеза сульфонилхлоридов 7, 9.К охлажденной в ледяной бане смеси 0,10 моль хлорсульфоновой кислоты и 0,01 моль тионилхлорида при интенсивном перемешивании порциями прибавляют 0,01 моль соответствующего карбоксамида 5, 6. Смесь выдерживают при охлаждении до полного растворения осадка, затем нагревают при 60 °C в течение 1 ч. Затем выливают ее в смесь льда с 52 мл хлороформа. Органический слой отделяют, промывают 78 мл 5 % раствора соды, сушат сульфатом натрия. Раствор флеш-хроматографируют на силикогеле, растворитель упаривают. Получают масло, кристаллизующееся при трении.

4-[3-(пирролидин-1-карбонил)-изоксазол-5ил]-бензол сульфонилхлорид7.

Выход 78 %, белые кристаллы, т. пл. 187– 189 °С. Найдено, %: С 49.30; Н 3.85; N 8.26; S 9.43. C14H13CIN2O4S. Вычислено, %: С 49.34; H 3.85; N 8.22; S 9.41. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.98 (4H, м, 2CH2 пирролидина); 3.65 (2H, м, CH2N пирролидина); 3.89 (2H, м, CH2N пирролидина); 7.13 (1H, с, H-4 изоксазола); 8.00 (1H, д, J=8.5, H-2 Ar); 8.14 (1H, д, J=8.5, H-2 Ar). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 340 [M]+ (5), 144 (7), 114 (7), 98 (31), 70 (100), 56 (76).

2-метокси-5-[3-(пирролидин-1-

карбонил)изоксазол-5-ил]-бензол сульфонилхлорид 9.

Выход 77 %, белые кристаллы, т. пл. 80–85 °С. Найдено, %: С 48.50; Н 4.08; N 7.59; S 8.66. С15H15ClN2O5S. Вычислено, %: С 48.59; Н 4.08; N 7.55; S 8.65. 1Н ЯМР (ДМСО-D6) δ, м. д. (Ј, Гц): 1.85 (4H, м, 2CH2 пирролидина); 3.53 (2H, м, CH2N пирролидина); 3.75 (2H, м, CH2N пирролидина); 4.00 (3H, с, OCH3); 6.81 (1H, с, H-4 изоксазола), 7.15 (1H, д, J=8.5, H-5 Ar); 7.97 (1H, дд, J1= 1.1, J2=8.5, H-6 Ar); 8.24 (2H, д, J=1.1, H-2 Ar). Массспектр (ЭУ, 150 эВ), m/z (I отн %): 370 [М]+ (7), 335 (2), 237 (15), 115 (16), 98 (45), 70 (96), 56 (68).

Синтез новых бифункциональных двуядерных изоксазолсодержащих молекулярных систем

Общая методика синтеза сульфонамидов 8а-с, 10а-с.

К смеси 0,001 моль сульфонилхлорида **7**, **9** и 0,002 моль пиридина в 5 мл ацетонитрилаприбаляют 0,001 моль соответствующего амина (пирролидин [а], морфолин [b], 4-метокси-фениламин [с]). Реакционную смесь перемешивают при 60 °С в течение 1 ч. Добавляют 5 мл воды, выпавший осадок отфильтровывают. Продукт очищают методом колоночной хроматографии на силикагеле элюированием смесью этилацетат-петролейный эфир 50:50. После упаривания растворителя получают кристаллы **8а-с**, **10а-с**.

{5-[4-(пирролидин-1-сульфонил)-фенил]изоксазол-3-ил}-пирролидин-1-ил-метанон 8а.

Выход 74 %, белые кристаллы, т. пл. 190– 192 °С. Найдено, %: С 57.49; Н 5.64; N 11.25; S 8.56. C18H21N3O4S. Вычислено, %: С 57.59; H 5.64; N 11.19; S 8.54. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.66 (4H, м, 2CH2 пирролидина); 1.89 (4H, м, 2CH2 пирролидина); 3.18 (4H, м, CH2N пирролидина); 3.52 (2H, м, CH2N пирролидина); 3.71 (2H, м, 2CH2N пирролидина); 7.53 (1H, с, H-4 изоксазола); 7.96 (2H, д, J=8.2, 2-H, H-6 Ar); 8.18 (2H, д, J=8.2, H-3,5 Ar). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 375 [М]+ (10), 240 (13), 115 (8), 76 (11), 70 (100), 42 (93), 39 (19).

{5-[4-(морфолин-4-сульфонил)-фенил]изоксазол-3-ил}-пирролидин-1-ил-метанон 8b.

Выход 78 %, белые кристаллы, т. пл. 187– 189 °С. Найдено, %: С 55.20; Н 5.41; N 10.79; S 8.21. C18H21N3O5S. Вычислено, %: С 55.23; H 5.41; N 10.73; S 8.19. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.90 (4H, м, 2CH2 пирролидина); 2.92 (4H, м, 2CH2Nморфолина); 3.52 (2H, м, CH2N пирролидина); 3.63 (4H, м, CH2O морфолина); 3.72 (2H, м, 2CH2N пирролидина); 7.56 (1H, с, H-4 изоксазола); 7.90 (2H, д, J=8.5, H-2, 6 Ar); 8.22 (2H, д, J=8.5, H-3,5 Ar). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 391 [М]+ (8), 240 (8), 98 (20), 86 (40), 70 (53), 56 (100), 42 (28).

N-(4-метокси-фенил)-4-[3-(пирролидин-1карбонил)-изоксазол-5-ил]-бензол сульфониламид 8с.

Выход 77 %, белые кристаллы, т. пл. 167– 169 °С. Найдено, %: С 58.89; Н 4.96; N 9.88; S 7.51. C21H21N3O5S. Вычислено, %: С 59.00; H 4.95; N 9.83; S 7.50. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.88 (4H, м, 2CH2 пирролидина); 3.51 (2H, м, CH2N пирролидина); 3.66 (3H, с, OCH3); 3.69 (2H, м, CH2N пирролидина); 6.81 (2H, д, J=8.5, H-2,6 Ar2); 6.98 (2H, д, J=8.5, H-3,5 Ar2); 7.45 (1H, с, H-4 изоксазола); 7.8 (2H, д, J=8.5, 2, H-6 Ar1); 8.09 (2H, д, J=8.5, H-3,5 Ar1); 10.04 (1H, c, NH). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 427 [M]+ (3), 123 (9), 122 (100), 95 (15), 70 (9), 56 (19), 42 (16).

{5-[4-Метокси-3-(пирролидин-1сульфонил)-фенил]-изоксазол-3-ил}пирролидин-1-ил-метанон 10а.

Выход 78 %, белые кристаллы, т. пл. 190– 195 °С. Найдено, %: С 56.19; Н 5.72; N 10.42; S 7.92. C19H23N3O5S. Вычислено, %: С 56.28; H 5.72; N 10.36; S 7.91. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.76 (4H, м, 2CH2 пирролидина); 1.89 (4H, м, 2CH2 пирролидина); 3.27 (2H, м, CH2N пирролидина); 3.51 (2H, м, CH2N пирролидина); 3.69 (2H, м, CH2N пирролидина); 3.99 (3H, с, OCH3); 7.32 (1H, с, H-4 изоксазола); 7.45 (1H, д, J=7.5, H-6 Ar); 8.2 (1H, д, J=7.5, H-5 Ar); 8.22 (1H, с, H-2 Ar). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 405 [M]+ (4), 98 (43), 70 (100), 59 (48).

{5-[4-Метокси-3-(морфолин-4-сульфонил)фенил]-изоксазол-3-ил}-пирролидин-1-илметанон 10b.

Выход 79 %, белые кристаллы, т. пл. 205– 208 °С. Найдено, %: С 54.07; Н 5.72; N 10.42; S 7.92. C19H23N3O5S. Вычислено, %: С 56.28; H 5.72; N 10.36; S 7.91. 1Н ЯМР (ДМСО-D6) δ, м. д. (J, Гц): 1.89 (4H, м, 2CH2 пирролидина); 3.13 (4H, м, 2CH2N пирролидина), 3.51 (2H, м, CH2O морфолина); 3.6 (4H, м, CH2N, CH2O морфолина); 3.7 (2H, м, 2CH2N морфолина); 3,99 (3H, с, OCH3); 7.34 (1H, с, H-4 изоксазола); 7.46 (2H, д, J=8.5, H-2 Ar); 8.2 (1H, с, H-6 Ar); 8.23 (1H, д, J=8.5, H-5 Ar); 9.03 (1H, с, NH). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 421 [М]+ (5), 98 (34), 86 (36), 70 (45), 59 (61).

2-Метокси-N-(4-метокси-фенил)-5-[3-(пирролидин-1-карбонил)-изоксазол-5-ил]бензолсульфонамид 10с.

Выход 76 %, розовые кристаллы, т. пл. 125– 128 °C. Найдено, %: С 57.69; Н 5.07; N 9.23; S 7.02. C22H23N3O6S. Вычислено, %: С 57.76; Н 5.07; N 9.18; S 7.01. 1Н ЯМР (ДМСО-D6) δ, м. д. (Ј, Гц): 1.88 (4Н, м, 2CH2 пирролидина); 3.49 (4Н, м, 2CH2N пирролидина); 4.38 (6Н, с, 2 OCH3); 3.99 (2Н, м, CH2N пирролидина); 6.77 (2Н, д, J=8.9, H-2 Ar2); 7.00 (2Н, д, J=8.9, H-4,5 Ar2); 7.25(1H, с, H-4 изоксазола); 7.33 (1H, д, J=8.5, 6-H Ar1); 8.10 (1H, с, H-2 Ar1); 8.14 (1H, д, J=8.5, H-5 Ar1); 9.8 (с, 1H, NH). Масс-спектр (ЭУ, 150 эВ), m/z (Іотн %): 457 [М]+ (5), 122 (100), 98 (13), 70 (14), 59 (24).

Библиографический список

1. Chan M.F. et al., The discovery and structure– activity relationships of nonpeptide, low molecular weight antagonists selective for the endothelin ETB receptor [Text] / Chan M.F. et al.// Bioorg Med Chem 6, (1998).

2. Sielecki, T.M., Orally Active Isoxazoline Glycoprotein IIb/IIIa Antagonists with Extended Duration of Action [Text] / Sielecki, T.M. // J Med Chem 42, (1999).

3. Simoni D. etal., Heterocycle-Containing Retinoids [Text] /. Simoni D. etal.// J Med Chem 44, (2001).

Bibliograficheskij spisok

1. Chan M.F. et al., The discovery and structure– activity relationships of nonpeptide, low molecular weight antagonists selective for the endothelin ETB receptor [Text] / Chan M.F. et al.// Bioorg Med Chem 6, (1998).

2. Sielecki, T.M., Orally Active Isoxazoline Glycoprotein IIb/IIIa Antagonists with Extended Duration of Action [Text] / Sielecki, T.M.// J Med Chem 42, (1999).

3. Simoni D. etal., Heterocycle-Containing Retinoids [Text] /. Simoni D. etal.// J Med Chem 44, (2001).