тогда придется изменить структуру портфеля в узле (2,0) в соответствии с равенством $-1 \cdot 40 + 108.3 = 68.3$, для чего взять в долг 0.365 акции, продать их за 14.6 и увеличить фонд до суммы $108.3 = 78.08 \cdot 1.2 + 14.6$. Но это и будет означать, что независимо от цены акции в момент 3 продавец выполнит свои обязательства, то есть вернет акцию и выплатит 70 или 110, поскольку $108.3 \cdot 1.2 \cong 130 = 60 + 70 = 20 + 110$.

Замечание 2. В рассмотренной ситуации момент оптимальной остановки $\tau^*(\omega) = 1$ на 4 траекториях-элементарных исходах ω , проходящих через узел (1,0), или 3 на 4 траекториях проходящих через узел (1,1). Ясно, что в этом последнем случае исполнение в конце срока жизни опциона. На первой же половине траекторий исполнять свой опцион владельцу надо в узле (1,0), если он не хочет, чтобы продавец что-то выиграл лишнее. И эти лишние суммы (17.29 или 38.99) мы указали.

Библиографический список

- 1. Ширяев, А.Н. Основы стохастической финансовой математики [Текст]. М.: Фазис, 1998. Т. 1, 2. 1024 с.
- 2. Лю, Ю-Д. Методы и алгоритмы финансовой математики [Текст]. М.: Бином. лаб. знаний. 2007. 752 с.
- 3. Жуленев, С.В. Стохастическая финансовая математика. Финансовые рынки в дискретном случае [Текст]. МГУ, мех-мат. ф-т, 2007. 104 с.

М.А. Заводчиков

О СВОЙСТВАХ СТАБИЛЬНЫХ ПУЧКОВ РАНГА 2 С КЛАССАМИ ЧЕРНА C_1 = - 1, C_2 = 2, C_3 = 0 НА ПРОЕКТИВНОМ ПРОСТРАНСТВЕ P^3

1 Введение

Пусть \mathcal{E} — стабильный когерентный пучок без кручения ранга 2 на трехмерном проективном пространстве \mathbb{P}^3 с классами Черна $c_1=-1,c_2=2,c_3=0$. В настоящей статье рассматриваются три семейства таких пучков \mathcal{E} с базами $M_1,~M_2$ и M_3 размерности 11, 13 и 15 соответственно. Доказывается, что семейства $M_1,~M_2$ и M_3 составляют открытые подмножества неприводимых компонент схемы модулей $\mathbf{M}=M_{\mathbb{P}^3}(2;-1,2,0)$ стабильных пучков без кручения с классами Черна $c_1=-1,c_2=2,c_3=0$ на \mathbb{P}^3 . Эти семейства $M_1,~M_2$ и M_3 теоретико-множественно строятся следующим образом. Пусть \mathbf{M}_r — открытое подмножество рефлексивных пучков в схеме модулей $M_{\mathbb{P}^3}(2;-1,1,1)$ стабильных пучков без кручения с классами Черна $c_1=-1,c_2=c_3=1$ на \mathbb{P}^3 . Тогда

$$M_1 := \{ [\mathcal{E}] \in \mathbf{M} \mid \mathcal{E} = \ker(\mathcal{F} \twoheadrightarrow \mathcal{O}_m(1)), \text{ где } \mathcal{F} \in \mathbf{M}_r, \text{ а } m - \text{прямая в } \mathbb{P}^3 \},$$
 (1)

$$\begin{aligned} M_2 &:= \{ [\mathcal{E}] \in \mathbf{M} \mid \mathcal{E} = \ker(\mathcal{F} \twoheadrightarrow \mathcal{O}_m \oplus k_x), \text{ где} \\ \mathcal{F} \in \mathbf{M}_r, \ m - \text{прямая в } \mathbb{P}^3, \text{ а } x - \text{точка в } \mathbb{P}^3 \}, \end{aligned}$$

$$M_3 := \{ [\mathcal{E}] \in \mathbf{M} \mid \mathcal{E} = \ker(\mathcal{F} \twoheadrightarrow \mathcal{O}_m(-1) \oplus k_{x_1} \oplus k_{x_2}),$$
где $\mathcal{F} \in \mathbf{M}_r,$
 m – прямая в \mathbb{P}^3 , а x_1, x_2 – различные точки в $\mathbb{P}^3 \}.$ (3)

В настоящей статье вычисляются группы $\operatorname{Ext}^1(\mathcal{E},\mathcal{E})$ для каждого семейства $M_1,\ M_2$ и M_3 . Основным результатом работы является следующая теорема.

Теорема 1. Для пучков $\mathcal{E} \in M_1$ dim $\operatorname{Ext}^1(\mathcal{E}, \mathcal{E}) = 11$, для пучков $\mathcal{E} \in M_2$ dim $\operatorname{Ext}^1(\mathcal{E}, \mathcal{E}) = 15$, для пучков $\mathcal{E} \in M_3$ dim $\operatorname{Ext}^1(\mathcal{E}, \mathcal{E}) = 19$.

2 Семейство M_1

Рассмотрим пучки $\mathcal{E} \in M_1$. Каждый такой пучок \mathcal{E} включается в точную тройку $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{O}_m(1) \to 0$. Вычислим размерность $\operatorname{Ext}^1(\mathcal{E},\mathcal{E})$. Согласно [1, Proposition 3.4]

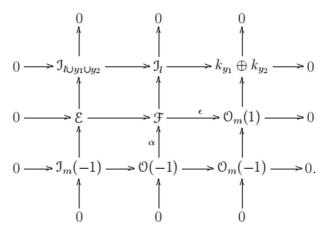
$$-\dim \operatorname{Hom}(\mathcal{E}, \mathcal{E}) + \dim \operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E}) - \dim \operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E}) + \dim \operatorname{Ext}^{3}(\mathcal{E}, \mathcal{E}) = 10. \tag{4}$$

Вычислим размерность $\operatorname{Hom}(\mathcal{E},\mathcal{E})$. Докажем, что кроме гомотетий, других гомоморфизмов из \mathcal{E} в \mathcal{E} не существует. Пусть $\phi:\mathcal{E}\to\mathcal{E}$ – не изоморфизм. Тогда имеется точная последовательность: $0\to\mathcal{K}\xrightarrow{\delta}\mathcal{E}\xrightarrow{\phi}\mathcal{E}\to Q\to 0$, где $\mathcal{K}=\ker(\phi)$, $Q=\operatorname{coker}(\phi)$. Пусть далее $\mathcal{E}':=\operatorname{coker}(\delta)$. Так как ϕ – не изоморфизм, то $\operatorname{rk} Q=\operatorname{rk} \mathcal{K}=\operatorname{rk} \mathcal{F}'$. Следовательно, $\phi=0$.

Пусть x – точка в \mathbb{P}^3 , в которой пучок \mathcal{E} не имеет особенности. Ограничение пучка $\mathcal{E}|_x$ на точку x изоморфно k_x^2 . Пусть λ – собственное число оператора $\phi|_x: k_x^2 \to k_x^2$. Тогда $\ker(\phi - \lambda \mathrm{id}(\mathbf{x})) \neq 0$ и, следовательно, $\phi - \lambda \mathrm{id}(\mathbf{x})$ – не изоморфизм. Поэтому $\phi - \lambda \mathrm{id}(\mathbf{x}) = 0$ и $\phi = \lambda \mathrm{id}(\mathbf{x})$, то есть ϕ – гомотетия. Поэтому $\operatorname{Hom}(\mathcal{E}, \mathcal{E}) = \mathbf{k}$.

Размерность $\operatorname{Ext}^3(\mathcal{E},\mathcal{E})$ вычислим с помощью двойственности Серра. $\operatorname{Ext}^3(\mathcal{E},\mathcal{E}) = \operatorname{Hom}(\mathcal{E},\mathcal{E}(-4))^\vee$. Докажем, что $\operatorname{Hom}(\mathcal{E},\mathcal{E}(-4)) = 0$. Предположим, что существует гомоморфизм $\sigma: \mathcal{E} \to \mathcal{E}(-4)$, и пусть $\omega: \mathcal{E}(-4) \overset{s}{\to} \mathcal{E}$, где s – уравнение гиперповерхности S степени 4. Следовательно, существует гомоморфизм $\xi = \sigma \circ \omega: \mathcal{E} \to \mathcal{E}$, который на гиперповерхности S равен 0. Но так как $\operatorname{Hom}(\mathcal{E},\mathcal{E}) = \mathbb{k}$, то ξ – гомотетия, и поэтому ξ не может обнуляться на поверхности S. Поэтому $\operatorname{Hom}(\mathcal{E},\mathcal{E}(-4)) = 0$. Следовательно, $\operatorname{Ext}^3(\mathcal{E},\mathcal{E}) = 0$.

Прежде чем вычислить размерность $\operatorname{Ext}^2(\mathcal{E},\mathcal{E})$, сделаем некоторые замечания. Так как \mathcal{F} рефлексивный пучок ранга 2 без кручения на \mathbb{P}^3 с классами Черна $c_1=-1,\ c_2=1,\ c_3=1,$ то согласно [1], \mathcal{F} включается в точную тройку: $0\to \mathcal{O}(-1)\to \mathcal{F}\to \mathcal{I}_l\to 0$, где l – прямая в \mathbb{P}^3 . Для дизъюнктных m и l имеем коммутативную диаграмму:



Таким образом, пучок Е включается в точную тройку:

$$0 \to \mathfrak{I}_m(-1) \to \mathcal{E} \to \mathfrak{I}_{l \cup y_1 \cup y_2} \to 0. \tag{5}$$

Из точных троек $0 \to \mathcal{O}(-2) \to 2\mathcal{O}(-1) \to \mathcal{I}_l \to 0$ и $0 \to \mathcal{O}(-1) \to \mathcal{F} \to \mathcal{I}_l \to 0$, где l – прямая в \mathbb{P}^3 , следует, что пучок \mathcal{F} имеет локально свободную резольвенту вида: $0 \to \mathcal{O}(-2) \to 3\mathcal{O}(-1) \to \mathcal{F} \to 0$.

Вычислим теперь размерность $\operatorname{Ext}^2(\mathcal{E},\mathcal{E})$. Применим к точной тройке $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{O}_m(1) \to 0$ функтор $\operatorname{Hom}(*,\mathcal{E})$, получим точную последовательность:

$$\operatorname{Ext}^{2}(\mathfrak{F}, \mathcal{E}) \to \operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E}) \to \operatorname{Ext}^{3}(\mathcal{O}_{m}(1), \mathcal{E})$$
 (6)

Вычислим размерность $\operatorname{Ext}^3(\mathcal{O}_{\mathrm{m}}(1),\mathcal{E})$. По двойственности Серра $\operatorname{Ext}^3(\mathcal{O}_{\mathrm{m}}(1),\mathcal{E}) = \operatorname{Hom}(\mathcal{E},\mathcal{O}_{\mathrm{m}}(-3))^\vee$. $\operatorname{Hom}(\mathcal{E},\mathcal{O}_{\mathrm{m}}(-3)) = \operatorname{Hom}(\mathcal{E}|_{\mathrm{m}},\mathcal{O}_{\mathrm{m}}(-3))$. Рассмотрим точную последовательность $0 \to \mathcal{I}_m(-1) \to \mathcal{E} \to \mathcal{I}_{l \cup y_1 \cup y_2} \to 0$. Ограничим ее на m, получим точную последовательность: $\mathcal{I}_m(-1)|_m \to \mathcal{E}|_m \to \mathcal{I}_{l \cup y_1 \cup y_2}|_m \to 0$. $\mathcal{I}_m|_m = N_{m/\mathbf{P}^3}^\vee = 2\mathcal{O}_m(-1), \, \mathcal{I}_{l \cup y_1 \cup y_2}|_m = \mathcal{O}_m(-2) \oplus k_{y_1}^2 \oplus k_{y_2}^2$. $\operatorname{Hom}(2\mathcal{O}_{\mathrm{m}}(-2), \mathcal{O}_{\mathrm{m}}(-3)) = 0$, $\operatorname{Hom}(\mathcal{O}(-2) \oplus k_{y_1}^2 \oplus k_{y_2}^2, \mathcal{O}_{\mathrm{m}}(-3)) = 0$. Следовательно, $\operatorname{Hom}(\mathcal{E}, \mathcal{O}_{\mathrm{m}}(-3)) = 0$ и $\operatorname{Ext}^3(\mathcal{O}_{\mathrm{m}}(1), \mathcal{E}) = 0$.

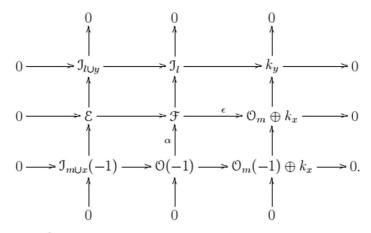
Вычислим размерность $\operatorname{Ext}^2(\mathcal{F},\mathcal{E})$. Применим к точной тройке $0 \to \mathcal{O}(-2) \to 3\mathcal{O}(-1) \to \mathcal{F} \to 0$ функтор $\operatorname{Hom}(*,\mathcal{E})$, получим точную последовательность: $\operatorname{Ext}^1(\mathcal{O}(-2),\mathcal{E}) \to \operatorname{Ext}^2(\mathcal{F},\mathcal{E}) \to \operatorname{Ext}^2(3\mathcal{O}(-1),\mathcal{E})$. $\operatorname{Ext}^1(\mathcal{O}(-2),\mathcal{E}) = \operatorname{H}^1(\mathcal{E}(2)) = 0$, $\operatorname{Ext}^2(3\mathcal{O}(-1),\mathcal{E}) = 3\operatorname{H}^2(\mathcal{E}(1)) = 0$, следовательно, $\operatorname{Ext}^2(\mathcal{F},\mathcal{E}) = 0$. Поэтому, используя (4), получаем, что $\operatorname{Ext}^1(\mathcal{E},\mathcal{E}) = 11$. Таким образом, так как $\dim T_{[E]}M = \dim \operatorname{Ext}^1(\mathcal{E},\mathcal{E})$, то семейство M_1 составляет открытое подмножество неприводимой компоненты схемы M.

3 Семейство M_2

Рассмотрим пучки $\mathcal{E} \in M_2$. Каждый такой пучок \mathcal{E} включается в точную тройку $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{O}_m \oplus k_x \to 0$. Вычислим размерность $\operatorname{Ext}^1(\mathcal{E},\mathcal{E})$. Для пучков из M_2 также выполняется равенство (4). Размерность $\operatorname{Hom}(\mathcal{E},\mathcal{E})$ и $\operatorname{Ext}^3(\mathcal{E},\mathcal{E})$ можно найти аналогично параграфу 2 настоящей статьи.

Так же, как и в параграфе 2, сделаем некоторые замечания.

Для дизъюнктных m и l, $x \notin m$ и $x \notin l$ имеем коммутативную диаграмму:



Таким образом, пучок Е включается в точную тройку:

$$0 \to \mathcal{I}_{m \cup x}(-1) \to \mathcal{E} \to \mathcal{I}_{l \cup y} \to 0. \tag{7}$$

Вычислим размерность $\operatorname{Ext}^2(\mathcal{E},\mathcal{E})$. Применим к точной тройке $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{O}_m \oplus k_x \to 0$ функтор $\operatorname{Hom}(*,\mathcal{E})$, получим точную последовательность:

$$\operatorname{Ext}^2(\mathcal{F}, \mathcal{E}) \to \operatorname{Ext}^2(\mathcal{E}, \mathcal{E}) \to \operatorname{Ext}^3(\mathcal{O}_{\operatorname{m}} \oplus k_{\operatorname{x}}, \mathcal{E}) \to \operatorname{Ext}^3(\mathcal{F}, \mathcal{E}).$$
 (8)

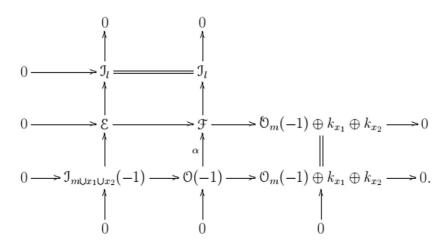
Вычислим размерность $\operatorname{Ext}^3(\mathfrak{O}_m \oplus k_x, \mathcal{E})$. По двойственности Серра $\operatorname{Ext}^3(\mathfrak{O}_m \oplus k_x, \mathcal{E}) = \operatorname{Hom}(\mathcal{E}, \mathfrak{O}_m(-4) \oplus k_x)^\vee$. $\operatorname{Hom}(\mathcal{E}, \mathfrak{O}_m(-4) \oplus k_x) = \operatorname{Hom}(\mathcal{E}, \mathfrak{O}_m(-4)) \oplus \operatorname{Hom}(\mathcal{E}, k_x)$. $\operatorname{Hom}(\mathcal{E}, \mathfrak{O}_m(-4)) = \operatorname{Hom}(\mathcal{E}|_m, \mathfrak{O}_m(-4))$. Рассмотрим точную последовательность $0 \to \mathfrak{I}_{m \cup x}(-1) \to \mathcal{E} \to \mathfrak{I}_{l \cup y} \to 0$. Ограничим ее на m, получим точную последовательность: $0 \to \mathfrak{I}_{m \cup x}(-1)|_m \to \mathcal{E}|_m \to \mathfrak{I}_{l \cup y}|_m \to 0$. $\mathfrak{I}_{m \cup x}|_m = \mathfrak{I}_m|_m = N_{m/\mathbf{P}^3}^\vee = 2\mathfrak{O}_m(-1)$, $\mathfrak{I}_{l \cup y}|_m = \mathfrak{O}(-1) \oplus k_y^2$. $\operatorname{Hom}(2\mathfrak{O}_m(-2), \mathfrak{O}_m(-4)) = 0$, $\operatorname{Hom}(\mathfrak{O}(-2) \oplus k_y^2, \mathfrak{O}_m(-4)) = 0$. Следовательно, $\operatorname{Hom}(\mathcal{E}, \mathfrak{O}_m(-4)) = 0$. $\mathcal{E}|_x = k_x^4$, следовательно, $\operatorname{Hom}(\mathcal{E}, k_x) = \operatorname{Hom}(\mathcal{E}|_x, k_x) = k_x^4$. Поэтому $\operatorname{Ext}^3(\mathfrak{O}_m \oplus k_x, \mathcal{E}) = k_x^4$.

Вычислим размерности $\operatorname{Ext}^2(\mathfrak{F},\mathcal{E})$ и $\operatorname{Ext}^3(\mathfrak{F},\mathcal{E})$. Применим к точной тройке $0 \to \mathfrak{O}(-2) \to 3\mathfrak{O}(-1) \to \mathfrak{F} \to 0$ функтор $\operatorname{Hom}(*,\mathcal{E})$, получим точную последовательность: $\operatorname{Ext}^1(\mathfrak{O}(-2),\mathcal{E}) \to \operatorname{Ext}^2(\mathfrak{F},\mathcal{E}) \to \operatorname{Ext}^2(3\mathfrak{O}(-1),\mathcal{E}) \to \operatorname{Ext}^2(3\mathfrak{O}(-2),\mathcal{E}) \to \operatorname{Ext}^3(3\mathfrak{O}(-1),\mathcal{E})$. $\operatorname{Ext}^1(\mathfrak{O}(-2),\mathcal{E}) = \operatorname{H}^1(\mathcal{E}(2)) = 0$, $\operatorname{Ext}^2(3\mathfrak{O}(-1),\mathcal{E}) = 3\operatorname{H}^2(\mathcal{E}(1)) = 0$, следовательно, $\operatorname{Ext}^2(\mathfrak{F},\mathcal{E}) = 0$. $\operatorname{Ext}^2(\mathfrak{O}(-2),\mathcal{E}) = \operatorname{H}^2(\mathcal{E}(2)) = 0$, $\operatorname{Ext}^3(3\mathfrak{O}(-1),\mathcal{E}) = 3\operatorname{H}^3(\mathcal{E}(1)) = 0$, следовательно, $\operatorname{Ext}^3(3\mathfrak{O}(-1),\mathcal{E})$. Тогда $\operatorname{dim}\operatorname{Ext}^2(\mathcal{E},\mathcal{E}) = 4$ Поэтому, используя (4), получаем, что $\operatorname{dim}\operatorname{Ext}^1(\mathcal{E},\mathcal{E}) = 15$.

4 Семейство M_3

Рассмотрим пучки $\mathcal{E} \in M_3$. Каждый такой пучок \mathcal{E} вкдючается в точную тройку $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{O}_m(-1) \oplus k_{x_1} \oplus k_{x_2} \to 0$. Вычислим размерность $\operatorname{Ext}^1(\mathcal{E},\mathcal{E})$. Для пучков из M_3 выподняется равенство (4). Размерность $\operatorname{Hom}(\mathcal{E},\mathcal{E})$ и $\operatorname{Ext}^3(\mathcal{E},\mathcal{E})$ можно найти аналогично параграфу 2 настоящей статьи.

Сделаем предварительные замечания. Для дизъюнктных m и $l, x_1, x_2 \not\in m$ и $x_1, x_2 \not\in l$ имеем коммутативную диаграмму:



Таким образом, пучок Е включается в точную тройку:

$$0 \to \mathfrak{I}_{m \sqcup x_1 \sqcup x_2}(-1) \to \mathcal{E} \to \mathfrak{I}_I \to 0. \tag{9}$$