Д.И.Артамкин

КОМПОНЕНТЫ СХЕМЫ МОДУЛЕЙ ПОЛУСТАБИЛЬНЫХ ПУЧКОВ РАНГА ДВА НА ТРЕХМЕРНОЙ КВАДРИКЕ

Введение

В статье изучается схема модулей М_Q(2;0,2,0) Гизекера–Маруямы полустабильных пучков без кручения ранга 2 на квадрике Q⊂**P**⁴ с классами Черна c₁=0, c₂=2, c₃=0 [1,2]. Введем несколько обозначений, которыми будем пользоваться ниже.

- М:=М_Q(2;0,2) -- многообразие модулей стабильных векторных расслоений *E* на *Q*, с rk*E*=2 и классами Черна *c*₁(*E*)=0 и *c*₂(*E*)=2.
- Через $\overline{M} = \overline{M_Q(2;0,2)}^G$ обозначим замыкание многообразия модулей расслоений $M_Q(2;0,2)$ в схеме $M_Q(2;0,2,0)$.
- Пусть $x \in V$ произвольная точка некоторого векторного пространства V над полем **k**. Обозначим $\langle x \rangle$ подпространство $\mathbf{k}x \in P(V)$.

Известно [2], что $M_Q(2;0,2,0)$ не пусто и содержит неприводимую компоненту M, содержащую в качестве открытого плотного подмножества многообразие $M_Q(2;0,2)$ модулей стабильных голоморфных векторных расслоений ранга два на квадрике с нулевым первым классом Черна и минимально возможным, согласно условию Шварценберга [2. С.194], вторым классом Черна, равным 2.

В статье доказывается, что $M_Q(2;0,2,0)$ содержит также еще по крайней мере две неприводимые 13-мерные компоненты, пересекающие компоненту \overline{M} по компонентам границы $\partial \overline{M} := \overline{M} \setminus M$.

Основной результат, дающий описание этих двух компонент, заключается в следующих теоремах:

Теорема 1. В $M_Q(2;0,2,0)$ существует неприводимая компонента \overline{M}_0 , которая есть замыкание неприводимого многообразия M_0 , dim M_0 =13. Все точки M_0 – стабильные пучки, $M_Q(2;0,2,0)$ неособо вдоль M_0 , и M_0 пересекает \overline{M} по неприводимому 8-мерному многообразию, лежащему в \overline{M} , точное описание которого дается формулой (1.13).

Теорема 2. В $M_Q(2;0,2,0)$ существует неприводимая компонента M_1 , которая есть замыкание неприводимого многообразия M_1 , dim M_1 =13. $M_Q(2;0,2,0)$ неособо вдоль M_1 , и M_1 пересекает \overline{M} по неприводимому 8-мерному многообразию, лежащему в \overline{M} .

Статья состоит из двух параграфов, первый из которых посвящен доказательству Теоремы 1, а второй – Теоремы 2.

1. Компонента Мо

Рассмотрим общую точку $[E] \in M$, Оттавиани и Шурек в [2] показали, что нулями общего сечения $s \in H^0(E(1))$ является объединение двух непересекающихся коник. Обратно, если мы имеем пару непересекающихся коник $C_1 \sqcup C_2$ на Q, то конструкция Серра нам дает расслоение E на Q.

$$\xi: 0 \to O_Q(-1) \to \mathcal{E} \to I_{C_1 \coprod C_2, Q}(1) \to 0.$$
(1.1)

Тогда $\xi \in \operatorname{Ext}^{1}(I_{C_{1} \coprod C_{2}, \mathcal{Q}}(1), O_{\mathcal{Q}}(-1)),$ но

$$\operatorname{Ext}^{1}(I_{C_{1}\coprod C_{2},\mathcal{Q}}(1),O_{\mathcal{Q}}(-1)) = H^{0}(\operatorname{Ext}^{1}(I_{C_{1}\coprod C_{2},\mathcal{Q}}(1),O_{\mathcal{Q}}(-1))) =$$

$$= H^{0}(Ext^{2}(O_{C_{1}\coprod C_{2},\mathcal{Q}}(1),O_{\mathcal{Q}}(-1))) = H^{0}(O_{C_{1}} \oplus O_{C_{2}})$$
((1.2)

и при этом отождествлении компоненты $\xi_i \in H^0(O_{C_i})$, *i*=1,2 элемента ξ , будучи обра-

зующими в $H^0(O_{C_i})$, обеспечивают локальную свободу пучка Е.

Введем несколько дополнительных обозначений:

- *H*_{2,2} объединение всех неприводимых компонент схемы Hilb⁴ⁿ⁺²(*Q*), содержащих несвязное объединение *C*₁⊔*C*₂ двух различных непересекающихся коник в качестве общей точки.
- $\Sigma = \{(C, <s>) | C \in H_{2,2}, s \in H^0(Ext^1(I_{C,O}(1), O_O(-1)))) \text{сечение без нулей} \}.$
- $H^*_{2,2} = \{C \in H_{2,2} | C = C_1 \sqcup C_2, C_1, C_2 \text{гладкие коники}, C_1 \cap C_2 = \emptyset\}.$
- Σ*={(C,<s>)∈Σ|C∈H*_{2,2}}.
 Лемма 1. H*_{2,2} неприводимо.

Доказательство. Действительно, ввиду неособости Q любая коника C на квадрике Q высекается из нее единственной плоскостью $\mathbf{P}^2 = Span(C)$ в \mathbf{P}^4 , а значит, получаем биекцию

 $sec: H_{2,2} \rightarrow Sym^2G(2,4) \setminus Y: C_1 \amalg C_2 \mapsto (Span(C_1), Span(C_2)),$ где $Y=\{(\mathbf{P}_a^2, \mathbf{P}_b^2) \in Sym^2G(2,4) | \mathbf{P}_a^2 \cap \mathbf{P}_b^2 \cap Q \neq \emptyset\}$. Учитывая неособость $Sym^2G(2,4)$ и то, что Y является собственным замкнутым подмножеством, получаем неприводимость $H_{2,2}^*$.

Рассмотрим кривую B в Σ такую, что $B=B^*\cup\{b_0\}$, где $b_0=(C_0,<s_0>)$, а $B^*=B\cap\Sigma^*$, причем:

a)
$$C_0 = C_1 \cup C_2$$
 – схема, определяемая нерасщепляющейся точной тройкой
 $0 \rightarrow \mathbf{k}_{x_0} \rightarrow O_{\begin{array}{c} C_1 \cup C_2 \end{array}} \rightarrow O_{\begin{array}{c} C_1 \cup C_2 \end{array}} \rightarrow 0,$
(1.3)

где $x_0 = C_1 \cap C_2$ – точка трансверсального пересечения C_1 и C_2 , где C_1 и C_2 – гладкие коники.

b) $s_0 \in Ext^1(I_{C_0}(1), O_Q(-1)).$

Итак, мы имеем отображение *S*:*B** → M, задаваемое конструкцией Серра.

Предложение 1.2. Конструкция Серра (1.1) определяет отображение $S: B \to \overline{M}^G$ такое, что

1) $S(b_0) = [E_0], c \partial e [E_0] \in \partial \overline{M} := \overline{M} \setminus M$,

2) Е₀ стабилен по Гизекеру,

3) Пусть $E_0 = E_0^{\vee\vee}$ и сап: $E_0 \rightarrow E_0 - \kappa$ аноническое отображение пучка E_0 в свой дважды двойственный пучок \tilde{E}_0 , тогда coker сап = \mathbf{k}_{x_0} , $\tilde{E}_0 - pe\phi$ лексивен, $c_3(\tilde{E}_0)=2$ и имеет место коммутативная диаграмма:

Доказательство. Докажем сначала утверждение 3). Из (1.3) имеем: $0 \rightarrow I_{C_0,Q} \xrightarrow{i} I_{C_1 \cup C_2,Q}(1) \xrightarrow{e} \mathbf{k}_{x_0} \rightarrow 0$. Применяя к этой точной последовательность ности функтор Hom($\cdot, O_Q(-1)$), получим следующую точную последовательность: $\dots \rightarrow \operatorname{Ext}^1(\mathbf{k}_{x_0}, O_Q(-1)) \rightarrow \operatorname{Ext}^1(I_{C_1 \cup C_1,Q}, O_Q(-1)) \xrightarrow{i_*}$

$$\xrightarrow{i_{\ast}} \operatorname{Ext}^{1}(\mathbf{k}_{x_{0}}, O_{Q}(-1)) \to \operatorname{Ext}^{1}(I_{C_{1} \cup C_{2}, Q}, O_{Q}(-1)) \xrightarrow{i_{\ast}}$$

$$\xrightarrow{i_{\ast}} \operatorname{Ext}^{1}(I_{C_{0}, Q}, O_{Q}(-1)) \to \operatorname{Ext}^{2}(\mathbf{k}_{x_{0}}, O_{Q}(-1)) \to \dots$$

$$(1.5)$$

По двойственности Серра $\operatorname{Ext}^{1}(\mathbf{k}_{x_{0}}, O_{Q}(-1)) = \operatorname{Ext}^{2}(O_{Q}(-1), \mathbf{k}_{x_{0}}(-3))^{\vee}$, но, в свою очередь, $\operatorname{Ext}^{2}(O_{Q}(-1), \mathbf{k}_{x_{0}}(-3)) = \operatorname{Ext}^{2}(O_{Q}, \mathbf{k}_{x_{0}}(-2)) = H^{2}(\mathbf{k}_{x_{0}}(-2)) = H^{2}(\mathbf{k}_{x_{0}}) = 0$. Аналогично $\operatorname{Ext}^{2}(\mathbf{k}_{x_{0}}, O_{Q}(-1)) = H^{1}(\mathbf{k}_{x_{0}})^{\vee} = 0$, поэтому отображение *i** в (1.5) является изоморфизмом. Следовательно, для любого элемента $\xi \in \operatorname{Ext}^{1}(I_{C_{0},Q}(1), O_{Q}(-1))$ найдется такой элемент $\xi_{0} \in \operatorname{Ext}^{1}(I_{C_{1}\cup C_{2},Q}(1), O_{Q}(-1))$ такой, что $\xi = i*\xi_{0}$. Последнее означает, что расширение, определяемое элементом ξ :

$$0 \to O_Q(-1) \to \mathcal{E}_0 \to I_{C_0,Q}(1) \to 0, \tag{1.6}$$

получается из расширения

$$0 \to O_{\mathcal{Q}}(-1) \to \tilde{E}_0 \xrightarrow{\nu} I_{C_1 \cup C_2, \mathcal{Q}}(1) \to 0,$$
(1.7)

определяемого элементом ξ_0 , при помощи так называемой операции "push out", то есть из двух точных троек $0 \to I_{C_0,Q}(1) \xrightarrow{i} I_{C_1 \cup C_2,Q}(1) \xrightarrow{e} \mathbf{k}_{x_0} \to 0$ и (1.7) получается коммутативная диаграмма:

что доказывает утверждение 3).

Для доказательства утверждения 2) нам достаточно показать, что пучок E стабилен. Предположим противное, рассмотрим подпучок L ранга 1 пучка E, тогда пучок $L^{\vee\vee}$ является, очевидно, подпучком пучка $E^{\vee\vee} = \tilde{E}$, а так как $L^{\vee\vee} -$ рефлексивный пучок ранга 1, то $L^{\vee\vee} = O_Q(n)$. Тогда если \tilde{E} не является стабильным, то $n \ge 0$. Получаем две точных тройки: $0 \to O_Q(-1) \to \tilde{E} \to I_{C_1 \cup C_2, Q}(1) \to 0$ и $0 \to O_Q(n) \xrightarrow{i} \tilde{E} \to$ со ker $i \to 0$, домножив которые на $O_Q(-n)$, получаем противоречие: у пучков $O_Q(-n-1)$ и $I_{C_1 \cup C_2, Q}(1-n)$ $n \ge 0$ нет сечений (наличие сечений у $I_{C_1 \cup C_2, Q}(1)$ равносильно принад-

лежности обеих коник одному \mathbf{P}^3), а у $\tilde{E}(-n)$ – есть. Таким образом \tilde{E} , а, значит, и Е стабильны. Утверждение 2) доказано.

Утверждение 1) теперь очевидно. ف Пусть теперь

- S_{2,2}={C∈H_{2,2}|C=C₁ ∪ C₂ − схема вида (1.3)}.
- $H_{2,2}^{**} = H_{2,2}^* \cup S_{2,2}$.
- $\Sigma^{**} = \{ (C, < s >) \in \Sigma \mid C \in H_{2,2}^{**} \}.$
- $D_{2,2}=S(\Sigma^{**}\Sigma^*).$
- $H_{4,0}$ объединение всех неприводимых компонент схемы Hilb⁴ⁿ⁺¹Q, содержащих гладкую нормквартику ${}^{0}C^{4}$ в качестве общей точки.
- $S_{4,0} = \{C \in H_{4,0} | C = C_1 \cup C_2, C_1 \cap C_2 = \{pt\}\}.$

Замечание 1.2.1. dim $D_{2,2}$ =8, то есть $D_{2,2}$ – неприводимая компонента в ∂M . Лемма 1.3. $S_{4,0}$ неприводимо.

Доказательство. Каждой гладкой конике *C* на *Q* соответствует единственная плоскость \mathbf{P}^2 =Span(*C*), причем *C*=Span(*C*) \cap *Q*. Таким образом, получаем инъективный морфизм ψ : $S_{4,0} \rightarrow Sym^2G(2,4):C=C_1 \cup C_2 \mapsto (Span(C_1),Span(C_2))$. Очевидно что если $C=C_1 \cup C_2 \in S_{4,0}$, то Span(C_1) \cap Span(C_2) $\cap Q=\{pt\}$.

Рассмотрим

$$\Psi := \psi(S_{4,0}) = \{ (\mathbf{P}_{a}^{2}, \mathbf{P}_{b}^{2}) \in Sym^{2}G(2,4) | \mathbf{P}_{a}^{2} \cap \mathbf{P}_{b}^{2} \cap Q = \{ pt \}.$$

$$(1.8)$$

$$HETPVIHO BUJETE HEDPHEOJUMO OTKVJA CHEJVET HEDPHEOJUMOCTE State$$

Нетрудно видеть, что Ψ – неприводимо, откуда следует неприводимость $S_{4,0}$. Лемма 1.4. 1) *Схема* Hilb⁴ⁿ⁺¹*Q* неприводима, *u* dim Hilb⁴ⁿ⁺¹*Q* =12.

2) Схема $\operatorname{Hilb}^{4n+1}Q$ неособа в точках $S_{4,0}$, и общая кривая из $S_{4,0}$ деформируется в гладкую кривую ${}^{0}C^{4}$.

Доказательство. Рассмотрим график инциденции $\Gamma = \{(Q, {}^{0}C^{4}) | {}^{0}C^{4} \subset Q\}$. Имеем проекции $p_{1}: \Gamma \to O_{\mathbf{P}^{4}}(2)$ со слоем $\operatorname{Hilb}^{4n+1}Q$ и $p_{2}:\Gamma \to \operatorname{Hilb}^{4n+1}\mathbf{P}^{4}$ со слоем $|I_{{}^{0}C^{4},Q}(2)|$. Из

PGL(\mathbf{P}^4)/PGL(\mathbf{P}^1) и $|I_{{}^0C^4,Q}(2)|$ следует неприводимость Hilb⁴ⁿ⁺¹Q. Отсюда же, очевидно, следует dim Hilb⁴ⁿ⁺¹Q = dim $H^0_{4,0}(\mathbf{P}^4) + h^0(I_{{}^0C^4,Q}(2)) - h^0(O_{\mathbf{P}^4}(2)) = 21+5-14=12$. Утверждение 1) доказано.

Для доказательства утверждения 2) покажем, что $h^0(N_{C/Q})=12$, а $h^1(N_{C/Q})=0$.

Действительно, рассмотрим отображение $N_{C_1/Q} \to N_{C_1 \cup C_2/Q} \mid_{C_1}$, коядром кото-

рого, очевидно, будет \mathbf{k}_x , где x – точка пересечения C_1 и C_2 [6]. С другой стороны,

$$N_{C_1/Q} \cong O_{C_1}(1) \oplus O_{C_2}(1) \cong O_{\mathbf{p}^1}(2) \oplus O_{\mathbf{p}^1}(2), \tag{1.9}$$

откуда получаем точную тройку:

$$0 \to O_{\mathbf{P}^1}(2) \oplus O_{\mathbf{P}^1}(2) \to N_{C_1 \cup C_2/\mathcal{Q}} \mid_{C_1} \to \mathbf{k}_x \to 0.$$

Следовательно,

$$N_{C_1 \cup C_2/Q} \mid_{C_1} \cong O_{\mathbf{p}^1}(2) \oplus O_{\mathbf{p}^1}(3).$$
(1.10)

Рассмотрим три точные тройки:

$$0 \to N' \to N_{C_1 \cup C_2/Q} \to N_{C_1 \cup C_2/Q} \mid_{C_1} \to 0,$$

$$0 \to N_{C_1/Q} \to N_{C_1 \cup C_2/Q} \mid_{C_1} \to \mathbf{k}_x \to 0,$$

$$0 \to N' \to N_{C_2/Q} \to \mathbf{k}_x \to 0.$$
(1.11)

Подставляя в них (1.9) и (1.10), получим:

$$0 \to O_{C_2}(2pts) \oplus O_{C_2}(pt) \to N_{C_1 \cup C_2/Q} \to O_{C_1}(2pts) \oplus O_{C_1}(3pts) \to 0.$$
(1.12)

Нетрудно видеть, что $h^0(O_{C_2}(2pts) \oplus O_{C_2}(pt)) = 5$, $h^0(O_{C_1}(2pts) \oplus O_{C_1}(3pts)) = 7$ и $h^1(O_{C_2}(2pts) \oplus O_{C_2}(pt)) = h^1(O_{C_1}(2pts) \oplus O_{C_1}(3pts)) = 0$. Следовательно, $h^0(N_{C/Q})=12$ и $h^1(N_{C/Q})=0$.

Тогда, согласно теории деформаций (см., например, [6]), схема $\text{Hilb}^{4n+1}Q$ неособа в точке *С*. При этом общая кривая из $S_{4,0}$ деформируется в гладкую кривую ${}^{0}C^{4}$.

Следствие. Все $S_{4,0}$ содержатся в замыкании некоторой неприводимой компоненты $H_{4,0}^{o}$ схемы Гильберта Hilb⁴ⁿ⁺¹Q.

Пусть также

- $H_{4,0}^* = \{C \in H_{4,0}^0 | C \text{нормквартика} \}.$
- $H_{4,0}^{**} = H_{4,0}^* \cup S_{4,0}.$
- $\Sigma_{4,0}^{**} = \{(C, \langle s \rangle) \mid C \in H_{4,0}^{**}, s \in H^0(Ext^1(I_{C,Q}(1), O_Q(-1)))\}.$

Лемма 1.5. $\Sigma_{4,0}^{**}$ неприводимо.

Доказательство. $H_{4,0}^*$ неприводимо, так как $H_{4,0}^*$ – общие точки неприводимой компоненты $H_{4,0}^o$. Следовательно, $H_{4,0}^{**}$ неприводимо.

Имеется проекция $p_{4,0}: \Sigma_{4,0}^{**} \to H_{4,0}^{**}: (C,\langle s \rangle) \mapsto C$. Нетрудно видеть, что $p_{4,0}$ – проекция со слоем $P(H^0(Ext^1(I_{C,Q}(1),O_Q(-1)))) = \mathbf{P}^2$. Отсюда получаем, что $\Sigma_{4,0}^{**}$ неприводима.

Введем дополнительные обозначения:

- $N_{4,0}=S(\Sigma_{4,0}^{**})\subset M_Q(2;0,2,2)$, где $S:\Sigma_{4,0}^{**}\to N_{4,0}(C,\langle s\rangle)\mapsto [\tilde{E}_0]$, расслоенное над своим образом пространство со слоем $P(H^0(E_0(1)))$.
- $\mathbf{M}_{4,0} = \{ ([\tilde{E}_0], \langle \varepsilon_0 \rangle) | \tilde{E}_0 \in \mathbf{N}_{4,0}, \tilde{E}_0 \xrightarrow{\varepsilon_0} \mathbf{k}_{x_0}$ эпиморфизм, $x_0 \in Q \}.$

Замечание 1.5.1. Очевидно из леммы 1.5 следует также и неприводимость N_{4,0}.

Замечание 1.5.2. $M_{4,0\to}N_{4,0}:([E_0],\langle \epsilon_0 \rangle) \mapsto [E_0] - проекция с неприводимым сло$ $ем <math>\mathbf{P}(\tilde{E}_0)$.

Неприводимость Р(Е 0) следует из следующей леммы.

Лемма 1.6 (см. [4. Лемма 4.5]). Пусть F – рефлексивный пучок ранга два на неособом многообразии, и hdF \leq 1. Тогда **Р**(F) неприводим.

Так как E₀ – стабильный рефлексивный пучок, то (см. [3. Гл. II, §1]) коразмер-

ность множества его особенностей не меньше трех, то есть hd $\tilde{E}_0 \leq 4-3=1$.

Лемма 1.7. $N_{4,0}$ – гладкое многообразие, и dim $N_{4,0}$ =9, при этом $N_{4,0}$ – открытое подмножество неприводимой компоненты схемы $M_Q(2;0,2,2)$.

Доказательство. Рассмотрим график инциденции: $\Gamma = \{ (\tilde{E}, {}^{0}C^{4}) | \tilde{E} = S(({}^{0}C^{4}, \langle s \rangle)) \},$ как и в доказательстве леммы 1.4, имеем две проекции: $p_1: \Gamma \rightarrow N_{4,0}$ со слоем

 $P(H^{0}(\tilde{E}_{0}(1)))$ и $p_{2}:\Gamma \rightarrow \text{Hilb}^{4n+1}Q$ со слоем $P(\text{Ext}^{1}(I_{0}C^{4},Q(2),O_{Q})))$. Отсюда получаем

dimN_{4,0}=dim Hilb⁴ⁿ⁺¹Q+dim $P(\text{Ext}^{1}(I_{0_{C^{4},Q}}(2), O_{Q}))$ -dim $P(H^{0}(\tilde{E}_{0}(1)))$.

Для вычисления $h^0(E(1))$ рассмотрим точные тройки

$$0 \to O_Q \to E(1) \to I_{{}^{0}C^4,Q}(2) \to 0,$$

$$0 \to I_{{}^{0}C^4,Q}(2) \to O_Q(2) \to O_{{}^{0}C^4}(2) \to 0.$$

 $h^0(O_{{}^0C^4}(2)) = 9, \quad h^0(\tilde{E}_Q(2)) = 14,$ следовательно, $h^0(\tilde{E}(1)) = 6.$ Итак, получаем: dim N_{4,0}=12+2-5=9.

Для доказательства неособости многообразия $N_{4,0}$ применим функтор Hom(\cdot, E) к (1.6):

 $\dots \to \operatorname{Ext}^2(I_{C_1 \cup C_2, \mathcal{Q}}(1), \widetilde{E}) \to \operatorname{Ext}^2(\widetilde{E}, \widetilde{E}) \to \operatorname{Ext}^2(O_{\mathcal{Q}}(-1), \widetilde{E}) \to \dots$

Из точной последовательности $0 \to I_{C_1 \cup C_2, Q}(1) \to O_Q(1) \to O_{C_1 \cup C_2}(1) \to 0$, применяя

функтор Hom (\cdot, \tilde{E}) , получаем

$$\dots \to \operatorname{Ext}^{2}(O_{\mathcal{Q}}(1), \widetilde{E}) \to \operatorname{Ext}^{2}(I_{C_{1} \cup C_{2}, \mathcal{Q}}(1), \widetilde{E}) \to \operatorname{Ext}^{3}(O_{C_{1} \cup C_{2}}(1), \widetilde{E}) \to \dots \text{ Заметив, что}$$

Ext²($O_Q(1), \tilde{E}$)= $H^2(\tilde{E}(-1))$, из точной последовательности (1.6), домноженной на $O_Q(1)$, получаем Ext²($O_Q(1), \tilde{E}$)=0.

По двойственности Серра имеем $\operatorname{Ext}^{3}(O_{C_{1}\cup C_{2}}(1), \tilde{E}) = \operatorname{Hom}(\tilde{E}, O_{C_{1}\cup C_{2}}(-2))$. Применяя функтор $\operatorname{Hom}(\cdot, O_{C_{1}\cup C_{2}}(-2))$ к (1.6), получим

$$.. \rightarrow \operatorname{Hom}(\mathbb{I}_{C_1 \cup C_2, \mathcal{Q}}(1), \mathcal{O}_{C_1 \cup C_2}(-2)) \rightarrow \operatorname{Hom}(E, \mathcal{O}_{C_1 \cup C_2}(-2)) \rightarrow \operatorname{Hom}(\mathcal{O}_{\mathcal{Q}}(-1), \mathcal{O}_{C_1 \cup C_2}(-2)) \rightarrow ...$$

Но Hom($O_Q(-1), O_{C_1 \cup C_2}(-2)$) = $H^0(O_{C_1 \cup C_2}(-1)) = 0$. Заметим также, что Hom($U_{C_1 \cup C_2, Q}(1), O_{C_1 \cup C_2}(-2)$) = $H^0((U_{C_1 \cup C_2, Q}(1)|_{C_1 \cup C_2})^{\vee}(-2)) = H^0(N_{C_1 \cup C_2/Q}^{\vee}(-3)),$ так как $I_{C_1 \cup C_2, Q}(2)|_{C_1 \cup C_2} = N_{C_1 \cup C_2/Q}.$

Но из точной последовательности (1.12) $h^0(N^{\vee}_{C_1\cup C_2/Q}(-3))=0$, откуда получаем что

 $\operatorname{Ext}^{2}(I_{C_{1}\cup C_{2},Q}(1), \tilde{E}) = 0,$ а значит и $\operatorname{Ext}^{2}(\tilde{E}, \tilde{E}) = 0$. Вспоминая, что \tilde{E} – стабильный

пучок, получаем гладкость $M_Q(2;0,2,2)$ в точке $[E] \in N_{4,0}$, dim $M_Q(2;0,2,2)$ =dim Ext¹(\tilde{E}, \tilde{E}), по теореме Римана–Роха dim Ext¹(\tilde{E}, \tilde{E})=6 c_2 -3=9, то есть размерность N_{4,0} совпадает с размерностью $M_Q(2;0,2,2)$, откуда следует гладкость N_{4,0}.

Следствие. М_{4,0} неприводимо размерности 13.

Действительно, dim $M_{4,0}$ =dim $N_{4,0}$ +dim $P(\tilde{E})$ =9+4=13.

Рассмотрим отображение $\varphi: M_{4,0} \rightarrow M_Q(2;0,2,0):([E_0],\langle \varepsilon_0 \rangle) \mapsto E = \ker \varepsilon_0$, корректно определенное в силу предложения 1.2.

Предложение 1.8. *ф* – инъективный морфизм.

Положив $M_0 = \varphi(M_{4,0})$, имеем M_0 – гладкая неприводимая 13-мерная (из леммы 1.7) компонента схемы $M_Q(2;0,2,0)$ (предложение 1.8). Неособость схемы $M_Q(2;0,2,0)$ вдоль \overline{M}_0 мы получаем, дословно повторяя доказательство неособости $M_Q(2;0,2,2)$ вдоль $N_{4,0}$. Из определения D, предложения 1.2 и построения \overline{M}_0 непосредственно следует $D \subset M_0$, откуда очевидно следует

$$\mathbf{M}_0 \cap \overline{\mathbf{M}} = D. \tag{1.13}$$

Из предложения 1.2 следует также стабильность пучков из M_0 . Этим мы заканчиваем доказательство теоремы 1.

2. Компонента М1

Пусть $H_{2,2}$, Σ , $H^*_{2,2}$, Σ^* те же, что и в предыдущем параграфе.

Рассмотрим теперь кривую *B* в Σ такую, что $B=B^*\cup\{b_0\}$, где $b_0=(C_0,\langle s_0\rangle)$, а $B^*=B\cap\Sigma^*$, причем:

a)
$$C_0 = C_1 \cup C_2$$
 – схема, определяемая нерасщепляющейся точной тройкой
 $0 \rightarrow \mathbf{k}_{x_0} \oplus \mathbf{k}_{y_0} \rightarrow O_{C_1 \cup C_2} \rightarrow O_{C_1 \cup C_2} \rightarrow 0,$ (2.1)

где $\{x_0; y_0\} = C_1 \cap C_2$ – две точки пересечения гладких коник C_1 и C_2 , на Q. b) $s_0 \in Ext^1(I_{C_0}(1), O_Q(-1))$.

Как и в предыдущем параграфе, имеем отображение $S:B^* \to M$, задаваемое конструкцией Серра.

Предложение 2.1. Конструкция Серра (1.1) определяет отображение $S:B \to \overline{M}^G$ такое, что

1) $S(b_0) = [E_0], z \partial e [E_0] \in \partial M := M \setminus M$,

2) Е₀ стабилен по Гизекеру,

3) пусть $\tilde{E}_0 = E_0^{\vee\vee}$ и сап: $E_0 \rightarrow \tilde{E}_0 - \kappa$ аноническое отображение пучка E_0 в свой дважды

двойственный пучок \tilde{E}_0 , тогда coker can = $\mathbf{k}_{x_0} \oplus \mathbf{k}_{y_0}$, $\tilde{E}_0 - pe \phi$ лексивен, $c_3(\tilde{E}_0)=2$ и имеется коммутативная диаграмма:

ش.Доказательство. Доказательство аналогично доказательству предложения 1.2 Пусть теперь

• $S_{2,2}^*=\{C \in H_{2,2} | C = C_1 \cup C_2 - \text{схема вида} (2.1) \}.$

•
$$H_{2,2}^{***} = H_{2,2} \cup S_{2,2}^{*}$$

•
$$\Sigma^{***} = \{ (C, \langle s \rangle) \in \Sigma | C \in H_{2,2}^{***} \}.$$

- $D^*=S(\Sigma^{***}\setminus\Sigma^*).$
- $H_{4,1}$ объединение всех неприводимых компонент схемы Hilb⁴ⁿQ, содержащих гладкую эллиптическую квартику ¹С⁴ в качестве общей точки.
 - $S_{4,1}=\{C\in H_{4,1}|C=C_1\cup C_2, C_1, C_2-$ гладкие коники, $C_1\cap C_2=\{2pts\}\}.$

Замечание 2.1.1. dim $D^*=8$, то есть D^* – неприводимая компонента в $\partial \overline{M}$. Лемма 2.2. *S*_{4,1} неприводимо.

أف Доказательство. Неприводимость S_{4,1} получаем так же, как и неприводимость S_{4,0}. Лемма 2.3. 1) dim Hilb⁴ⁿQ = 12.

2) схема Hilb⁴ⁿQ неособа в точках $S_{4,1}$.

أت.1.4 مقرر Доказательство. Доказательство аналогично доказательству леммы

Следствие. Все S_{4,1} содержатся в замыкании некоторой неприводимой компоненты $H_{4,1}^o$. Пусть также

• $H_{4,1}^* = \{ {}^{1}C^4 \in H_{4,1}^o | {}^{1}C^4 -$ гладкая эллиптическая квартика $\}.$

•
$$H_{4,1}^{**} = H_{4,1} \cup S_{4,1}$$
.

• $\Sigma_{4,1}^{**} = \{(C, \langle s \rangle) | C \in H_{4,1}^{**}, s \in H^0(Ext^1(I_{C,Q}(1), O_Q(-1)))\}.$

Лемма 2.4. $\Sigma_{4,1}^{**}$ неприводимо.

ش.Доказательство. Доказательство аналогично доказательству леммы 1.5 Введем дополнительные обозначения:

- $N_{4,1}=S(\Sigma_{4,1}^{**})\subset M_Q(2;0,2,2),$ где $S:(C,\langle s \rangle) \mapsto [\tilde{E}_0]$, расслоение со слоем $P(H^0(\tilde{E}_0(1))).$

Замечание 2.4.1. N_{4,1} неприводимо (из Леммы 2.4).

Замечание 2.4.2. $M_{4,1} \rightarrow N_{4,1}: ([\tilde{E}_0], \langle \epsilon_0 \rangle) \mapsto [\tilde{E}_0] - n poekция с неприводимым слоем <math>\mathbf{P}(\tilde{E}_0).$ **Лемма 2.5.** N_{4,1} – гладкое многообразие, и dim N_{4,1}=9.

Доказательство. Аналогично доказательству леммы 1.7 имеем:

dimN_{4,1}=dim Hilb⁴ⁿQ+dimP(Ext¹(
$$I_{1_{C^{4},Q}}(2),O_{Q})$$
)-dim P($H^{0}(E(1))$).

Для вычисления $h^0(\tilde{E}(1))=\dim H^0(\tilde{E}(1))$ рассмотрим две точные тройки:

$$\begin{split} 0 &\to O_{\mathcal{Q}} \to E(1) \to I_{{}^{1}C^{4},\mathcal{Q}}(2) \to 0, \\ 0 &\to I_{{}^{1}C^{4},\mathcal{Q}}(2) \to O_{\mathcal{Q}}(2) \to O_{{}^{1}C^{4}}(2) \to 0. \end{split}$$

 $h^{0}(O_{1C^{4}}(2)) = 8, h^{0}(O_{Q}(2)) = 14$, следовательно, $h^{0}(\tilde{E}(1)) = 7$.

Гладкость N_{4,1} получается аналогично лемме 1.7 ڭ Следствие. М_{4,1} неприводимо размерности 13.

Доказательство. Действительно dim $M_{4,1}$ =dim $N_{4,1}$ +dim P(E)=9+4=13 ف. Рассмотрим отображение

$$\varphi: M_{4,1} \rightarrow M_Q (2;0,2,0): ([E_0], \langle \varepsilon_0 \rangle) \mapsto E = \ker \varepsilon_0,$$

корректно определенное в силу предложения 2.1.

Предложение 2.6. φ – инъективный морфизм.

Нетрудно видеть, что многообразие $M_1 = \phi(M_{4,1})$ удовлетворяет всем условиям теоремы 2.

Библиографический список

- 1. Ein L., Sols I. Stable vector bundles on quadric hypersurfaces // Nagoya Math. J. 1986.V. 96 P. 11-22.
- 2. *Ottaviani G., Szurek M.* On Moduli of Stable 2-Bundles with Small Chern Classes on Q₃ // Annali di Matematica pura ed applicata 1994. Vol. CLXVII (VI) P. 191–241.
- 3. *Оконек К., Шнейдер М., Шпиндлер Х.* Векторные расслоения на комплексных проективных пространствах. М.: Мир, 1984.
- Stromme S.A. Ample Divisors on Fine Moduli Spaces on the Projective Plane // Mathematishe Zeitschrift 1984. V. 187. P. 405–423.
- 5. Hartshorne R. Stable reflexive sheaves // Math. Ann. 1980. V. 254, P. 121-176.
- 6. *Hartshorne R. Hirshovitz A.* Smoothing algebraic space curves. In: Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., 1124. Springer, Berlin-New York, 1985. 98–131.
- 7. Maruyama M. Moduli of stable sheaves I, J. Math. Kyoto Univ. 1977. V. 17, P. 91–126.
- 8. Maruyama M. Moduli of stable sheaves II, J. Math. Kyoto Univ. 1978. V. 18, P. 557–614.